Tel 01904 415 415

Fax 01904 436 540

Cyclops Electronics uses cookies to ensure that we give you the best experience on our website. For optimal performance please accept cookies. For more information please visit our cookies policy.

Accept and close

Component Search

Blog

RSS Feed

Showing posts tagged 'ar'


24 November 2021

Global chip shortage to impact electronic retailers holiday season

resized shutterstock_1022824408

The holiday season usually marks the start of an electronics sales boon for retailers. Consumers buy more electronics in the lead up to Christmas than at any other time of the year. This year, however, things are different.

This holiday season, the global chip shortage is set to impact electronic retailers, with shortages of popular products like games consoles, graphics cards, smartphones, laptops and tablets likely to persist through to 2022.

Due to problems buying stock, most retailers are bracing themselves for low Christmas electronics goods sales. The global chip shortage means fewer electronics goods are being made, so there is a long lead time from suppliers - some retailers are waiting several months for new stock, only for it to sell out within days.

Consumers should start holiday shopping now 

Chips are in critically short supply this year, which has reduced manufacturing output at many of the world’s biggest factories.

Companies like Samsung, Apple, Intel and AMD are experiencing problems getting the chips they need. Today, some chips have delays of over a year, and inventory supplies for chips are running low, putting pressure on supply chains.

All of this means there is a shortage of in-demand electronics goods, from games consoles to smartwatches. The message is simple - consumers should start holiday shopping now to ensure they can get hold of the electronics they want.

It is also crucial that consumers don’t take stock levels for granted. What’s in stock today might be out of stock tomorrow, and many retailers have lead times of several months for new stock. So, if you need it, you should buy it while you can.

Is the chip shortage being blown out of proportion? 

We are so used to next-day Amazon delivery and seeing shiny electronics on store shelves that chip shortages appear to be a fantasy.

However, the chip shortage is real - manufacturers are struggling to create enough chips, and suppliers can’t get hold of the inventory they need.

Another fox in the henhouse is chip price increases. Companies are bidding through the roof for components, and prices are rising rapidly. Manufacturers don’t absorb these price rises - they are passed down the supply chain, and eventually, they find their way to the consumer (creating consumer inflation).

Chip prices are increasing for several reasons. The obvious reason is supply and demand economics - the less available something is, the higher the price.

Another significant reason is prices for rare earth metals have exploded over the last 12 months, moving nearly 50% higher on average since March.

Summing up the chip shortage

There is a severe chip shortage happening right now that threatens the availability of electronics goods this holiday season. Prices for chips are also skyrocketing, increasing the price of devices like smartphones and smart devices.

All of this is to say, if you plan on buying some chip-reliant electronics this holiday season, you should start shopping now or face being disappointed.

Tags: global chip shortage graphics cards samsung apple intel and amd chip price increases rare earth metals


17 November 2021

The tech industry is bracing for a potential shortage of passive electronic components

mmt

By now, everyone has heard of the global semiconductor shortage. Still, the tech industry is bracing itself for an altogether larger shortage of passive electronic components that could reduce manufacturing output across multiple categories.

Passive components do not generate energy but can store and dissipate it. They include resistors, inductors (coils), capacitors, transformers, and diodes, connecting to active elements in circuits. Passives are necessary for circuit architecture, so the shortage is bad news for the electronics industry as a whole.

The current state of the passive component shortage 

The truth is there has been a shortage of certain passive components since the coronavirus pandemic hit in 2020, particularly with multilayer ceramic capacitors (MLCCs), which can be difficult to get hold of in large quantities.

Certain diodes, transistors and resistors are also in shorter supply than they were in 2019, partly because of the pandemic and a shift in manufacturing investment for active components, which have a higher margin.

You also need to look at consumer trends (what people are buying). Smartphone and smartwatch sales are higher than ever, and smart ‘Internet of Things’ devices are growing in popularity rapidly, not to mention in availability.

These devices require a lot of passive components. For example, a typical smartphone requires over 1,000 capacitors. Cars are also huge consumers of passive components, with an electric car requiring around 22,000 MLCCs alone.

The trend for next-generation technology adoption is up across all categories, be it the Internet of Things, edge computing, semi-autonomous cars and 5G. Passive components are in more demand than ever at a time when supplies are under pressure.

Price rises are now inevitable 

The price for most passive components has risen by the largest amount in over a decade in 2021, caused by supply and demand economics and a price explosion for common materials like tin, aluminium and copper, as well as rare earth metals.

While some suppliers can afford to take a hit on profits, for most, raising prices is inevitable to ensure the viability of operations.

With higher component prices and greater shortages, it is more important than ever for companies to bolster their supply chains. Complacency is dangerous in today’s market, and no company is immune to disruption.

How to beat the passive components shortage 

The passive components shortage is likely to get worse before it gets better, but there are several ways you can bolster your supply chain:

  • Equivalents:Specifying equivalent passive components is a sound way to keep your supply chain moving. When a specific passive component isn’t available, an equivalent may be available that functions in exactly the same way.

  • Ditch outdated components:Outdated components have limited or no manufacturing output when discontinued. Upgrading to modern components that are manufactured in larger quantities can help you meet demand.

  • Partner with a global distributor:Global components distributors like us source and deliver day-to-day, shortage, hard-to-find and obsolete electronic components. We can help keep your supply chain moving in uncertain times. Contact us today SALES@CYCLOPS-ELECTRONICS.COM

Tags: the tech industry is bracing itself for an altogether larger shortage of passive electronic components that could reduce manufacturing output across multiple categories.


03 November 2021

Incoterms Explained

incoterms

Incoterms (International Commercial Terms) are a set of trade rules issued by the International Chamber of Commerce to define the responsibilities of sellers and buyers globally to reduce confusion in cross-border trade.

Incoterms are 11 internationally recognised rules that define things like who is responsible for managing shipment and who is responsible for customs clearance. The aim is to enable smooth trade and transactions.

This article will provide an explainer of the 11 Incoterms.

Incoterms for Any Mode of Transport

There are seven Incoterms for Any Mode of Transport:

  • EXW (Ex Works)- This Incoterm makes export clearance the responsibility of the buyer, except when the country overrules it by law (such as the U.S.).
  • FCA (Free Carrier)- The seller is responsible for making the goods available at its own premises or at a named place. The seller is responsible for export clearance and security.
  • CPT (Carriage Paid To)- The seller clears goods for transport and delivers them for shipment, assuming responsibility for delivery to the named destination.
  • CIP (Carriage and Insurance Paid To)- The seller is responsible for delivery and insurance of delivery, after which risk transfers to the buyer.
  • DAP (Delivered at Place)- The seller bears all risks associated with delivery but not unloading.
  • DPU (Delivered at Place Unloaded)- The seller bears all risks associated with delivery and unloading.
  • DDP (Delivered Duty Paid)- The seller bears all risks associated with customs duty and delivery, as well as unloading.

Incoterms for Sea and Inland Waterway Transport

There are four Incoterms for Sea and Inland Waterway Transport:

  • FAS (Free Alongside Ship)- The seller clears goods for export and delivers them for shipment alongside the vessel, after which the buyer assumes responsibility.
  • FOB (Free on Board)- The seller clears goods for export and delivers them for shipment on the vessel, after which the buyer assumes responsibility.
  • CFR (Cost and Freight)- The seller clears goods for export and assumes responsibility up until the goods are loaded on the vessel.
  • CIF (Cost, Insurance and Freight)- The seller clears goods for export and bears the cost of freight and insurance. Buyer assumes responsibility for unloading.

Understanding Incoterms 

Incoterms are designed to clearly define who is responsible for goods at different points of importation and exportation.

When explicitly incorporated by parties into a sales contract, Incoterms become a legally enforceable part of that sales contract.

In each Incoterm, a statement is provided for the seller’s responsibility to provide goods and a commercial invoice. A corresponding statement stipulates that the buyer pay the price of goods as provided in the contract of sale.

The limitation with Incoterms is they do not address all conditions of a sale, and they do not address liability or dispute resolution. Instead, they are a framework that importers and exporters can use to ensure smooth transactions.

To find out more about Incoterms, the ICC has an explainer article, or you can download the ICC’s free eBook for a detailed guide.

Tags: incoterms trade rules cross-border trade internationally recognized rules customs clearance exw fca cpt cip dap dpu ddp fas fob cfr cif importation exportation.


27 October 2021

Why is chip sovereignty so important?

chip

The US and EU are planning for chip sovereignty, aiming to defend domestic chip supplies and move manufacturing back home.

At first glance this is a tall order, considering most chips are made in China and China controls 55% of rare earth metal production, but it is nether the less crucial to ensure that the Western world has access to the chips it needs.

The need for chip sovereignty

As the electronics industry battles on with chip shortages, we are seeing car plants cut production and companies delay product launches.

These are only a few examples of measures applied like sticky plasters over supply chains that have been bleeding for years.

We are in a situation where electronic components manufacturers are running at 99-100% capacity. Demand has soared for all types of components, from chips and memory to diodes and displays, squeezing supply chains.

Quite simply, demand is outstripping supply.

Many of the problems in the supply chain are geopolitical and logistical in nature, so by moving manufacturing back home, nations like the US and the EU will be able to control the supply chain (or most of it) and make supply meet demand.

What’s happening?

The EU will legislate to push for chip sovereignty with the forthcoming “European Chips Act”. It aims to stop European countries from competing with each other for chips, instead having them work together to compete globally.

The US isn’t legislating for chip sovereignty, but the Biden administration used its first budget proposal to Congress to call for domestic funding to fight semiconductor shortages, with figures up to $50 billion being touted.

The UK is at odds with the US and EU with no chip sovereignty in sight.

Simply put, the UK is selling off chip firms, with $42 billion sold since 2010 (figures from US research). For example, In July, the UK’s largest chip plant was acquired by Nexperia - a Dutch firm wholly owned by Shanghai-based Wingtech.

This raises concerns over the future of UK chip manufacturing. Industry funding is seriously lacking too, putting the UK firmly behind the US and EU.

Companies are a successful case study 

As countries continue to struggle to meet demand for chips, some companies have taken matters into their own hands.

Apple produces their own chip called the M1 for the MacBook Air and iMac, and Google is doing the same with the Tensor chip, used in the Pixel 6 smartphone.

By moving away from Intel and Qualcomm respectively, Apple and Google have taken greater control over their supply chains, cutting out many geopolitical and logistical issues and unlocking greater pricing power.

With the global chip shortage showing no signs of abating and rare earth metal prices soaring, supply chains are only going to get squeezed more in the near future.

Chip sovereignty will be important for nations to meet demand and reduce reliance on China, Taiwan, and other countries a very long way away.

However, while the EU legislates for chip sovereignty, and the Biden administration pushes Congress for domestic chip funding, the UK continues to sell off chip firms to foreign investors. This will bite down hard when chip imports take a hit.

Tags: chip sovereignty china rare earth metal chip shortages chips memory diodes displays supply chain european chips act


13 October 2021

Electronic Component Shortage update

istockphoto-1206098096-612x612

The ongoing electronic component shortage is one of the biggest challenges global supply chains face today, with demand for many components, from chips to actives and passives, well and truly outstripping supply.

A lot has happened in the last month, with new research and analyst insights pointing to when demand might ease (hint: it won’t be this year).

Here’s your latest electronic component shortage update:

Chip lead times hit all-time high

According to Susquehanna Financial Group, chip lead times hit an all-time high of 21-weeks in September, up from 20.2 weeks in August and 18 weeks in July. However, in a research note, Susquehanna analyst Chris Rolland said that while lead times for some chips got worse, lead times for others like power management chips saw relief.

Gartner says global chip shortage will persist until Q2 2022

Gartner predicts the global semiconductor shortage will persist through Q1 2022 but recover to normal levels by the second quarter of 2022. They rate the current shortage as moderate and the shortages of early 2021 as severe.

Chipmakers should brace for 'oversupply' in 2023

Analyst firm IDC predicts that the global chip shortage may well turn into an oversupply situation in 2023, sending prices diving. They say the industry will see normalisation by the middle of 2022, with a potential for overcapacity in 2023.

EU pushes for chip sovereignty

The EU will legislate for chip sovereignty with the forthcoming “European Chips Act”, bringing together the EU’s semiconductor research, design, and testing capabilities, so that EU countries can make demand meet supply as one nation. “Europe cannot and will not lag behind,” the EU said in a statement on the Chips Act.

Ford Europe predicts chip shortages could continue to 2024

In an interview with CNBC, Ford Europe chairman of the management board Gunnar Herrmann estimated the chip shortage could continue through to 2024. Herrmann also revealed a new company crisis in raw materials. “It’s not only semiconductors,” he says, “you find shortages or constraints all over the place.”

Tesla's China output halted on chips shortage

Tesla temporarily halted some output at its Shanghai factory for four days in August due to the chips shortage, shutting part of the production line for electronic control units (ECUs), a small but significant action that cost it millions in revenue.

New forecast says chip shortage to cost car industry $210 billion

The total estimated cost of the chips shortage to the car industry keeps rising, with a new report from AlixPartners predicting a global cost of $210 billion. This is nearly double what their first report predicted in May ($110 billion).

Counterfeit chips penetrating the supply chain

As a result of the chips shortage, some manufacturers are turning to riskier supply channels, leaving themselves vulnerable to counterfeits. As ZDNet reports, this puts low-volume manufacturers whose supply chains are less established at risk.

If you are worried about counterfeits in your supply chain, read our 8 Step Guide To Buying Electronic Components With Confidence and Avoiding Counterfeits.

If you are struggling to find those hard to find and obsolete components. Contact Cyclops Electronics today. Call 01904 415 415, email sales@cyclops-electronics.com or visit our website https://www.cyclops-electronics.com/.

Tags: electronic component shortage global supply chains chip lead times semiconductor shortage chip sovereignty ford tesla alixpartners counterfeit chips


06 October 2021

Rare earth metal prices explode

earth metals]

Prices for rare earth metals have exploded over the last 12 months, moving nearly 50% higher on average since March.

This development could push prices of electronics components higher than ever, as a perfect storm of expensive raw materials + limited production capacity + higher demand = rocketing prices.

As we are seeing with the global semiconductor shortage, fluctuations in supply chains ripple through the electronics industry.

Electronic component shortages have, in part, been caused by reduced mining quota for raw materials including rate earth metals. But the problem now isn’t a lack of mining, but the soaring demand for rare earth metals.

The high price reflects strong demand. Rare earth metals are used in most electronic components and devices, from integrated circuits to displays, vibration motors and storage, so it’s easy to see why demand is so strong. 

For example, materials like neodymium and praseodymium used to make magnets have seen a 73% increase in demand in 2021. Holmium oxide used in sensors, terbium oxide used in displays and cobalt used in batteries have also seen increases.

Why have prices exploded?

China is the only country in the world with a complete supply chain for rare earth metals from mining, to refining, to processing. With over 55% of global production and 85% refining output, the world depends on them for rare earth metals.

In January, Beijing hinted at tightening controls for earth metal exports, triggering panic across the world and sending prices soaring.

For those of you who remember, rare earth prices exploded in 2011 when China’s export volumes collapsed. China cut export quotas of the 17 rare earth metals and raised tariffs on exports, sending prices soaring by more than 50%.

Talk about déjà vu!

Another factor for the price explosion is supply and demand. Even with China’s hints, demand for rare earth metals is outstripping supply. The world is using more electronics than at any time in its history, and rare earth metals are needed to make more of them.

It isn’t only relatively unknown materials like neodymium and praseodymium that are surging in price, but also more commonly known materials like tin, aluminium and copper, which have also surged in price in 2021.

So, in a nutshell, demand for rare earth metals is outstripping supply, and China (which has significant control over rare earth metals) has hinted at tightening exports, sending a shockwave through the supply chain.

The issue is bad and will take time to resolve. The United States is the second biggest producer of rare earth metals, and in February, President Joe Biden announced a review into domestic supply chains for rare earths, medical devices, chips and other resources, with a $30 million initiative to secure new supply chains.

Unfortunately for the world, China’s control of 55% of global production and 85% of refining output for rare earth metals means they control the market. Missteps, problems at home, and hints about tightening controls have already sent rare earth metal prices soaring, and it stands to reason they will continue creeping higher in the near-term. 

Tags: rare earth metals limited production capacity higher demand semiconductor shortage supply chains electronic components


29 September 2021

Communications including 5G will drive the components market

5G

According to IC Insights, the communication sector’s share of integrated circuit sales reached 35% in 2020 and is expected to grow to 36.5% by 2025. For perspective, the automotive sector’s share of integrated circuit sales was 7.5% in 2020 and will grow to 9.8% by 2025 - significantly less than communications.

Industry tailwinds

What’s driving such high demand for ICs in the communications sector?

There are four big tailwinds:

  • 5G
  • Edge computing
  • Internet of Things
  • AI (artificial intelligence), MI (machine learning) and data analytics

5G

5G is the main driver for components demand, with 5G infrastructure rollout happening slowly, but surely. We are nowhere near a complete version of 5G, and networks are in a race against time to deliver a reliable service.

The first step for networks is replacing low-band 4G spectrum, followed by mid-band spectrum that uses 2.5, 3.5 and 4.5 GHz, enabling faster data speeds. The final step is the rollout of millimetre wave, which enables true 5G speeds. Millimetre wave also happens to be a precursor for next-generation 6G.

On top of 5G infrastructure rollout you have more 5G-enabled devices coming to market, such as smartphones, tablets and laptops. Smartphones, in particular, are leading the way for 5G adoption, putting faster data in our hands.

The rapid growth in IC demand in the communications sector also stretches to other components like modems, memory and antennas. 5G isn’t just an IC boon - it’s a boon for all the electronic components needed for 5G. 

Edge computing

Second to 5G we have edge computing, which by a miraculous twist of fate is needed to deliver a 5G experience (and needs a whole lot of components).

Edge computing puts compute capabilities relatively close to end users and/or IoT endpoints. In doing so, it reduces latency, while 5G delivers faster data speeds, providing a seamless experience on certain devices.

Internet of Things

IoT describes a network of connected smart devices that communicate with each other. For example, a vital sign monitor in a hospital could communicate with medicine dispensers and automate medicine dosages for doctors.

The Internet of Things has been talked about as a trend for several years, but we now have real applications that are useful.

AI (artificial intelligence), MI (machine learning) and data analytics

AI (artificial intelligence), MI (machine learning) and data analytics require enormous, powerful data centres to power them. These data centres require significant investment in chips, memory and other electronic components.

Also, AI, MI and data analytics need cloud computing, edge computing and in some cases 5G to deliver a real-time experience.

The future

By 2025, the communications sector is forecast to have a 36.5% usage share of integrated circuits, making it the biggest consumer of semiconductors.

Demand for integrated circuits, discrete circuits, optoelectronics and sensors will grow to an all-time highs thanks to the industry tailwinds in this article. The future is bright, but to stay ahead, a robust supply chain will be needed.

Electronic components distributors like Cyclops are helping supply meet demand, while the communications sector battles to secure chip orders. Call us today at +44 (0) 01904 415 415 or email sales@cyclops-electronics.com 

Tags: communication automotive ics 5g edge computing internet of things components ic demand modems memory and antennas artificial intelligence machine learning data analytics integrated circuits


15 September 2021

Chip Shortage causing car manufacturers to cut production levels

photo-1591799264318-7e6ef8ddb7ea

A week doesn’t pass without an announcement from a car manufacturer that they are cutting production levels. Idling shifts and even entire factories has become normal for an industry that thrives on maximising output. 

Volkswagen, Ford, General Motors, Hyundai and Toyota have cut production levels to prioritise their most lucrative models. In some cases, plants have shut down for weeks at a time to allow supply chains to catch up to one another.

To understand how big this is, a 1-2 week plant shutdown will cost a car manufacturer millions of pounds at the very least. No manufacturer would willingly do this, but the global chip shortage is forcing them to.

Chip shortage in numbers

Just 53,438 cars rolled off assembly lines in the UK in July 2021, making it the lowest output in the month of July since 1956.

In June 2021, data from the Society of Motor Manufacturers and Traders (SMMT) showed that car production was down 52.6% on the same month in 2019, telling us that we’re a long way off reaching pre-pandemic levels.

According to research firm AlixPartners, the chip shortage will collectively cost the auto industry $110 billion in revenue in 2021 - a revised figure and an increase of 81.5% over the same firm’s figures in late January.

More telling figures come from Fitch Ratings, who estimate the chip shortage will cost automakers 5% of production. North America and Europe will be the hardest hit, with Asia and China coming in third and fourth respectively.

What’s happening with chips!?

The automotive sector has been hit harder than any other by the chip shortage due to cancelling orders for chips at the start of the pandemic.

Anticipating a slowdown that would last months, most car markers cancelled orders for chips. Semiconductor manufacturers filled order books with orders from companies making smartphones, laptops and other devices.

When the automotive sector bounced back sooner than expected, semiconductor manufacturers had hardly any capacity to meet demand. This has led to the situation today, where car makers can’t secure the inventory they need. 

Now, there are not enough chips, foundries are running at 99% capacity and new foundries take years and billions in investment to set up.

Changing the production line for a chip costs tens of millions and takes months, labour shortages are causing a manpower crisis, and the pandemic is causing short-term factory shutdowns at foundries and fabless plants.

When will the global chip shortage end?

It will take at least five years for the global chip shortage to subside, assuming investment in new foundries begins in 2021/22. New factories are the only the way out of the shortage because demand for chips is only going to increase.

Opinions on when the shortage will end vary from early 2023 to 2025. The last 18 months has tested supply chains and wreaked havoc on production, but the automotive industry is experienced enough to cope with future problems.

When you need to source hard to find electronic components quickly because of allocation, long lead times, obsolescence or quality issues, contact Cyclops Electronics for a fast response to your enquiries and a reliable on time delivery.

Tags: chip shortage car manufacturers volkswagen ford general motors hyundai toyota alixpartners semiconductor foundries pandemic


01 September 2021

Component Prices Rise 10% to 40% - But why?

pexels-photo-1105379

While component price rises are expected when demand outstrips supply, the scale of recent increases has come as a shock to many businesses.

In its Q3 Commodity Intelligence Quarterly, CMarket intelligence platform Supplyframe reports that some electronic components have seen prices rise by as much as 40%, making it uneconomical for products to be made.  

In particular, semiconductors, memory, and modems are seeing 10 to 40% price increases, exceeding what most analysts envisioned for 2021.

Why are prices rising?

Price rises start with materials. There are long lead times for many raw materials, causing shortages. Add rising commodity prices and difficulties transporting products and you have a disrupted manufacturing economy.

You also have to factor in the impact of the coronavirus pandemic, which has caused labour shortages and disrupted the manufacturing economy with shutdowns.

Logistics is also a big fly in the ointment for electronic components. The industry is recovering from COVID-induced shutdowns and travel restrictions are causing problems at borders, creating delays that ripple through the supply chain.

Supply and demand

The bulletproof economics of supply and demand also rule the roost for electronic components, and demand is higher than it has ever been.

We are in a situation today where most electronic components manufacturers are running at 99-100% capacity and can’t keep up with demand.

Demand is outstripping supply for chips, memory and communications components like integrated circuits, discrete circuits, optoelectronics and sensors, creating a bidding war as manufacturers scramble to get what they need.

Growing demand for new technologies

Emerging technologies like artificial intelligence, machine learning, virtual reality, augmented reality and edge computing are fuelling demand for smarter chips and data centre modernisation, while technologies like 5G and Wi-Fi 6 are demanding infrastructure rollout, which requires significant investment.

Across the board, technology is booming. Manufacturers are making more products for more people, and they must do so while balancing costs at a time when component prices are rising - no easy feat even for established businesses. 

Pressure relief

Everyone is raising prices in line with their own cost increases, from semiconductor manufacturers to outsourced fabs and suppliers. At 10 to 40%, these increases are putting pressure on supply chains and businesses.

How many price increases will target markets absorb? How can we sustain production without significant margin pressure? These are the challenges facing manufacturers, who are stuck between a rock and a hard place right now.

There are a few solutions:

  • Equivalents: Source equivalent components from different brands/makers/OEMs that meet size, power, specification, and design standards.
  • Use an electronic components distributor: Distributors are the best-connected players in the industry, able to source hard-to-procure and shortage components thanks to relationships with critical decision-makers.

Prices will fizzle down, eventually

Although research published by Supplyframe says pricing challenges will remain through early 2023, they won’t last forever. Price rises should fizzle out towards the end of 2021 as manufacturers catch up to orders and reduce disruption.

If you are experiencing an electronic component shortage, we can help. Email us if you have any questions or call us on 01904 415 415 for a chat with our team.

Tags: electronic components semiconductors memory price rises rising commodity prices coronavirus pandemic integrated circuits discrete circuits optoelectronics sensors artificial intelligence machine learning virtual reality augmented reality and


25 August 2021

Automotive electronics market set to grow

car

With vehicles getting smarter, more connected and more autonomous, the automotive electronics market looks set to soar.

Future growth in numbers

Back in March, Precedence Research predicted the automotive electronics market would hit around US$ 640.56 billion by 2030.

Then, in July, Global Market Insights released research predicting the automotive electronics market would hit around US$ 380 billion by 2027.

Interestingly, measured across the same period, both research reports (which are independent) predict a similar growth pattern. Global Market Insights predicts a 6% CAGR, while Precedence Research predicts a CAGR of 7.64% over a 3-year longer period.

With two separate reports indicating significant annual growth, the automotive electronics market looks set to boom. But wait, there’s more.

A 9.3% CAGR is expected in the automotive electronics market by 2030, according to research by P&S Intelligence. They predict slightly less growth than Precedence Research to 2030, at US$ 615.3 billion (versus $640.56 billion).

Growth factors

There are approximately 1,400 chips in a typical vehicle today, which each chip housing thousands of components on a semiconductor wafer, creating the integrated circuits that power computing, memory and a host of other tasks.

Those are just the chips.

Cars have thousands of other electronic components, including passive, active and  interconnecting electronic components, from batteries, sensors and motors, to displays and cameras. Oh, and everything is connected.

All told, a typical car today has more than 50,000 electronic components that enable features like in-car Wi-Fi, self-parking technology, adaptive headlights, semi-autonomous driving technology, keyless entry and powered tailgates.

However, cars are getter smarter and more advanced. Electronic components today make up around a third the cost of a car, which will increase over time as more sophisticated and greater numbers of components are used.

Smarter cars need more components  

The future of cars involves electrification, autonomous and self-driving technologies, hyperconnectivity, Internet of Things, augmented reality, artificial intelligence, biometrics and a whole host of next-generation technologies.

How will these be enabled? With electronic components.

Let’s take electrification as an example. An electric car handbook will tell you an electric car has a motor, a battery, an on-board charger, and an Electronic Control Unit (ECU) that controls one or more of the electrical systems or subsystems in the vehicle. Together, these let you drive around, charge, and pop to the shops.

In-between these systems, are hundreds of thousands of electronic components that make them work. You see, an Electronic Control Unit is a single component, containing thousands of smaller components, each performing a critical role.

The automotive electronics market is set to soar because cars and other vehicles will need more components with electrification and next-gen technologies. Sometimes, things can be simple to explain, and this is one of those times.

Meeting demand

The electronics industry is facing a global chip and electronic component shortage which is expected to last 2-3 years. As demand for automotive electronics soars, shortages look very likely for certain components like CPUs and memory.

The solution for many companies will be to use an electronics component distributor, to fill gaps in the supply chain and keep things moving.

Electronic component distributors like Cyclops can source hard-to-procure components because we have relationships with the best suppliers in the industry. Contact us today with your enquiries at sales@cyclops-elecronics.com or call 01904 415 415.

 

Tags: automotive electronics market electronic chips electronic components semiconductor wafer integrated circuit passive components active components interconnecting electronic components electrification internet of things augmented reality artificia


Component Search

Step 1

Enter Electronic Component part number below.

Step 2

Click the button below.
It’s that easy.

Cyclops Electronics Ltd, Reg. No. SC128862, VAT No. GB561633447

Registered Office: Allan House, 25 Bothwell Street, Glasgow G2 6NL

(Registered in the United Kingdom)

© 2021 Cyclops Electronics

Website by See Green