Tel 01904 415 415

Fax 01904 436 540

Cyclops Electronics uses cookies to ensure that we give you the best experience on our website. For optimal performance please accept cookies. For more information please visit our cookies policy.

Accept and close

Component Search

Blog

RSS Feed

Showing posts tagged 'chips'


27 October 2021

Why is chip sovereignty so important?

chip

The US and EU are planning for chip sovereignty, aiming to defend domestic chip supplies and move manufacturing back home.

At first glance this is a tall order, considering most chips are made in China and China controls 55% of rare earth metal production, but it is nether the less crucial to ensure that the Western world has access to the chips it needs.

The need for chip sovereignty

As the electronics industry battles on with chip shortages, we are seeing car plants cut production and companies delay product launches.

These are only a few examples of measures applied like sticky plasters over supply chains that have been bleeding for years.

We are in a situation where electronic components manufacturers are running at 99-100% capacity. Demand has soared for all types of components, from chips and memory to diodes and displays, squeezing supply chains.

Quite simply, demand is outstripping supply.

Many of the problems in the supply chain are geopolitical and logistical in nature, so by moving manufacturing back home, nations like the US and the EU will be able to control the supply chain (or most of it) and make supply meet demand.

What’s happening?

The EU will legislate to push for chip sovereignty with the forthcoming “European Chips Act”. It aims to stop European countries from competing with each other for chips, instead having them work together to compete globally.

The US isn’t legislating for chip sovereignty, but the Biden administration used its first budget proposal to Congress to call for domestic funding to fight semiconductor shortages, with figures up to $50 billion being touted.

The UK is at odds with the US and EU with no chip sovereignty in sight.

Simply put, the UK is selling off chip firms, with $42 billion sold since 2010 (figures from US research). For example, In July, the UK’s largest chip plant was acquired by Nexperia - a Dutch firm wholly owned by Shanghai-based Wingtech.

This raises concerns over the future of UK chip manufacturing. Industry funding is seriously lacking too, putting the UK firmly behind the US and EU.

Companies are a successful case study 

As countries continue to struggle to meet demand for chips, some companies have taken matters into their own hands.

Apple produces their own chip called the M1 for the MacBook Air and iMac, and Google is doing the same with the Tensor chip, used in the Pixel 6 smartphone.

By moving away from Intel and Qualcomm respectively, Apple and Google have taken greater control over their supply chains, cutting out many geopolitical and logistical issues and unlocking greater pricing power.

With the global chip shortage showing no signs of abating and rare earth metal prices soaring, supply chains are only going to get squeezed more in the near future.

Chip sovereignty will be important for nations to meet demand and reduce reliance on China, Taiwan, and other countries a very long way away.

However, while the EU legislates for chip sovereignty, and the Biden administration pushes Congress for domestic chip funding, the UK continues to sell off chip firms to foreign investors. This will bite down hard when chip imports take a hit.

Tags: chip sovereignty china rare earth metal chip shortages chips memory diodes displays supply chain european chips act


13 October 2021

Electronic Component Shortage update

istockphoto-1206098096-612x612

The ongoing electronic component shortage is one of the biggest challenges global supply chains face today, with demand for many components, from chips to actives and passives, well and truly outstripping supply.

A lot has happened in the last month, with new research and analyst insights pointing to when demand might ease (hint: it won’t be this year).

Here’s your latest electronic component shortage update:

Chip lead times hit all-time high

According to Susquehanna Financial Group, chip lead times hit an all-time high of 21-weeks in September, up from 20.2 weeks in August and 18 weeks in July. However, in a research note, Susquehanna analyst Chris Rolland said that while lead times for some chips got worse, lead times for others like power management chips saw relief.

Gartner says global chip shortage will persist until Q2 2022

Gartner predicts the global semiconductor shortage will persist through Q1 2022 but recover to normal levels by the second quarter of 2022. They rate the current shortage as moderate and the shortages of early 2021 as severe.

Chipmakers should brace for 'oversupply' in 2023

Analyst firm IDC predicts that the global chip shortage may well turn into an oversupply situation in 2023, sending prices diving. They say the industry will see normalisation by the middle of 2022, with a potential for overcapacity in 2023.

EU pushes for chip sovereignty

The EU will legislate for chip sovereignty with the forthcoming “European Chips Act”, bringing together the EU’s semiconductor research, design, and testing capabilities, so that EU countries can make demand meet supply as one nation. “Europe cannot and will not lag behind,” the EU said in a statement on the Chips Act.

Ford Europe predicts chip shortages could continue to 2024

In an interview with CNBC, Ford Europe chairman of the management board Gunnar Herrmann estimated the chip shortage could continue through to 2024. Herrmann also revealed a new company crisis in raw materials. “It’s not only semiconductors,” he says, “you find shortages or constraints all over the place.”

Tesla's China output halted on chips shortage

Tesla temporarily halted some output at its Shanghai factory for four days in August due to the chips shortage, shutting part of the production line for electronic control units (ECUs), a small but significant action that cost it millions in revenue.

New forecast says chip shortage to cost car industry $210 billion

The total estimated cost of the chips shortage to the car industry keeps rising, with a new report from AlixPartners predicting a global cost of $210 billion. This is nearly double what their first report predicted in May ($110 billion).

Counterfeit chips penetrating the supply chain

As a result of the chips shortage, some manufacturers are turning to riskier supply channels, leaving themselves vulnerable to counterfeits. As ZDNet reports, this puts low-volume manufacturers whose supply chains are less established at risk.

If you are worried about counterfeits in your supply chain, read our 8 Step Guide To Buying Electronic Components With Confidence and Avoiding Counterfeits.

If you are struggling to find those hard to find and obsolete components. Contact Cyclops Electronics today. Call 01904 415 415, email sales@cyclops-electronics.com or visit our website https://www.cyclops-electronics.com/.

Tags: electronic component shortage global supply chains chip lead times semiconductor shortage chip sovereignty ford tesla alixpartners counterfeit chips


25 August 2021

Automotive electronics market set to grow

car

With vehicles getting smarter, more connected and more autonomous, the automotive electronics market looks set to soar.

Future growth in numbers

Back in March, Precedence Research predicted the automotive electronics market would hit around US$ 640.56 billion by 2030.

Then, in July, Global Market Insights released research predicting the automotive electronics market would hit around US$ 380 billion by 2027.

Interestingly, measured across the same period, both research reports (which are independent) predict a similar growth pattern. Global Market Insights predicts a 6% CAGR, while Precedence Research predicts a CAGR of 7.64% over a 3-year longer period.

With two separate reports indicating significant annual growth, the automotive electronics market looks set to boom. But wait, there’s more.

A 9.3% CAGR is expected in the automotive electronics market by 2030, according to research by P&S Intelligence. They predict slightly less growth than Precedence Research to 2030, at US$ 615.3 billion (versus $640.56 billion).

Growth factors

There are approximately 1,400 chips in a typical vehicle today, which each chip housing thousands of components on a semiconductor wafer, creating the integrated circuits that power computing, memory and a host of other tasks.

Those are just the chips.

Cars have thousands of other electronic components, including passive, active and  interconnecting electronic components, from batteries, sensors and motors, to displays and cameras. Oh, and everything is connected.

All told, a typical car today has more than 50,000 electronic components that enable features like in-car Wi-Fi, self-parking technology, adaptive headlights, semi-autonomous driving technology, keyless entry and powered tailgates.

However, cars are getter smarter and more advanced. Electronic components today make up around a third the cost of a car, which will increase over time as more sophisticated and greater numbers of components are used.

Smarter cars need more components  

The future of cars involves electrification, autonomous and self-driving technologies, hyperconnectivity, Internet of Things, augmented reality, artificial intelligence, biometrics and a whole host of next-generation technologies.

How will these be enabled? With electronic components.

Let’s take electrification as an example. An electric car handbook will tell you an electric car has a motor, a battery, an on-board charger, and an Electronic Control Unit (ECU) that controls one or more of the electrical systems or subsystems in the vehicle. Together, these let you drive around, charge, and pop to the shops.

In-between these systems, are hundreds of thousands of electronic components that make them work. You see, an Electronic Control Unit is a single component, containing thousands of smaller components, each performing a critical role.

The automotive electronics market is set to soar because cars and other vehicles will need more components with electrification and next-gen technologies. Sometimes, things can be simple to explain, and this is one of those times.

Meeting demand

The electronics industry is facing a global chip and electronic component shortage which is expected to last 2-3 years. As demand for automotive electronics soars, shortages look very likely for certain components like CPUs and memory.

The solution for many companies will be to use an electronics component distributor, to fill gaps in the supply chain and keep things moving.

Electronic component distributors like Cyclops can source hard-to-procure components because we have relationships with the best suppliers in the industry. Contact us today with your enquiries at sales@cyclops-elecronics.com or call 01904 415 415.

 

Tags: automotive electronics market electronic chips electronic components semiconductor wafer integrated circuit passive components active components interconnecting electronic components electrification internet of things augmented reality artificia


10 August 2021

Passive and Interconnecting Electronic Components market to display lucrative growth

k-p-209-eye-chim-083032

The passive and interconnecting electronic components market is predicted to display lucrative growth across all regions over 2020-2025, with North America the dominant market due to the prominence of players in the country.

These predictions come from The Passive and Interconnecting Electronic Components market report from Market Study Report, which you can request a sample of here. The report delivers a rigorous analysis of the market, examining the main growth drivers and restraints, as well as opportunities for revenue cycles.

The passive and IEC markets are forecasted to experience a CAGR (compound annual growth rate) of 3.1% from 2020-2025, with the US market expected to reach $32.3 billion by 2025, up from $28.6 billion in 2020.

Key players in the industry include:

  • ABB
  • API Technologies
  • AVX Corporation
  • ST Microelectronics
  • 3M Electronics
  • Fujitsu Component
  • American Electronic Components
  • Hamlin
  • Eaton Corp.
  • Datronix Holding Ltd

As the world gets smarter and demand for passive and interconnecting electronic components increases, small players will also take a bigger role. Trade barriers caused by geography will need to be overcome to meet demand, fuelling an explosion in growth across all developed markets, from Europe to Asia Pacific.

What is fuelling growth?

While the report provides in-depth analysis of factors that will fuel growth, we don’t want to tread on its toes, so we’ll provide a simpler analysis.

The reason the passive and interconnecting electronic component markets are going to experience significant growth over the next several years is because of industry tailwinds and technological advancement. Given today’s technological innovation, it’s no wonder that demand for all types of electronic component is soaring.

Disruptive new technologies, rapid advancement in existing technologies and the adoption of smarter, more connected devices, is fuelling unprecedented demand for everything from passive components to chips.

For example, in 2021, manufacturing of passive components could see an 11% increase, but demand is likely to exceed 15%.

Making supply meet demand

There has been a lot of talk about how the next great technological cycle will fuel growth for the semiconductor industry, but it’s important to recognise that chips are nothing but silicon and metal without other components like passives and IECs.

While supply for some components like display drivers is ticking along, there is a global shortage for other components like active, passive and electro-mechanical components, putting manufacturers in a compromised position.

The shortage for some IECs and passive components is expected to last several years, so making supply meet demand will be a challenge in the near future.

To make supply meet demand, suppliers and manufacturers will need to partner with well-connected distributors. Electronic component distributors are the best-connected players in the supply chain, linking sellers with buyers and vice versa.

Sourcing and allocating shortage electronic components is something that we specialise in at Cyclops. We help source components that are impossible to find, helping to keep supply chains moving and manufacturing plants going.

With the passive and interconnecting electronic components market set to soar, planning is essential to make supply meet demand and capitalise on growth.

Tags: passive components electronic components trade barriers interconnecting electronic components rapid advancement passive components electronic chips semiconductor industry iecs


04 August 2021

Chips shortage limits auto production in Brazil and the rest of the world

automotive car

“Never seen anything like it,” Tesla’s Elon Musk tweeted last month about the global chips shortage, “Fear of running out is causing every company to overorder - like the toilet paper shortage, but at epic scale.”

If you want a prime example of the chips shortage, look to Brazil.

In 2020, the automotive industry in Brazil was hit hard by chip shortages and the coronavirus pandemic. Approximately 1.61 million passenger cars were made in 2020, a decrease of over 34% compared to the following year. 

2021 got off to a flier… then grounded

2021 got off to a much better start for Brazil, with 1.14 million passenger cars leaving the production line in in the first half of the year, a 57.5% increase compared to the same period last year. However, production has hit a ceiling.

Brazil's Association of Automotive Vehicle Manufacturers, ANFAVEA, has disclosed that because of chip shortages, Brazil missed its target for automotive production in the first half of 2021, and the numbers cited are startling.

According to ANFAVEA, some 100,000 to 120,000 passenger cars were prevented from entering production by the chips shortage. In June, only 166,947 passenger cars were made, the worst figures of any month in the last 12 months.

Manufacturing limitations created by the chips shortage have been compounded by the coronavirus pandemic. Brazil has seen 19.8m coronavirus cases with a 2.8% mortality rate, sadly resulting in over 500,000 deaths.

The biggest factories are struggling in Brazil

More than 20 plants in Brazil run by the likes of Volkswagen, Mercedes-Benz, General Motors, Nissan, Toyota, Renault, Volvo, Scania and Honda have shut down temporarily in 2021 because of the chips shortage and the pandemic.

At the beginning of June, Volkswagen halted operations at two Brazilian plants amid the chips shortage for 10 days. The company said, “A significant shortage of semiconductors is resulting in several supply bottlenecks.”

Then, in July, Hyundai Motor temporarily halted the operations of its Brazil plant due to the chips shortage. The closure was the first in the Piracicaba plant’s history, raising the alarm over chip shortages in the automotive sector.

What next for the Brazilian automotive sector?

Figures show that in the first half of 2021, the Brazilian automotive sector had a strong rebound on 2020. However, water has been thrown over the fire towards the middle of the year, due to chip shortages across the sector.

Local manufacturers expect to see some relief after August as manufacturing plants catch up, but manufacturers are uncertain about when the supply chain will normalise.

How’s morale among big companies? Sombre, to say the least.  

IBM says the chip shortage could last two years, while Intel Intel’s chief executive, Pat Gelsinger, thinks it could stretch into 2023.

Dell’s CEO echoes these sentiments, "The shortage will probably continue for a few years. Even if chip factories are built all over the world, it takes time."

So, whichever way we look, and whichever experts we ask, the global chip shortage is showing no signs of abating. For Brazil’s auto manufacturers, making supply meet demand will be the biggest test of the last few decades.

Need Electronic Components?

When you need to source hard to find electronic components quickly because of allocation, long lead times, obsolescence, or quality issues, contact Cyclops Electronics for a fast response to your enquiries and a reliable on time delivery. Email Sales@cyclops-electronics.com or call 01904 415 415 today.

Tags: global chips shortage automotive industry coronavirus pandemic volkswagen mercedes-benz general motors nissan toyota renault volvo scania honda dell tesla elon musk semiconductors


23 June 2021

Semiconductor production capacity expected to hit records highs in 2021

new electronic component image

As you probably know, we are in the middle of a global semiconductor shortage. Auto manufacturers are cutting jobs, brands are delaying the release of new products, and people are struggling to buy things like games consoles.

It’s a grim situation predicted to last a few years, but behind the scenes, semiconductor companies are preparing to come out of the chip shortage swinging.

In fact, it’s predicted that semiconductor production capacity will reach a record high in 2021 so long as additional production lines are completed. This is reliant on production lines coming online following investments made at the beginning of 2018.

According to industry forecasts, next year, another 10 production lines for 300mm silicon wafers will be added worldwide. These will contribute millions of semiconductors each year, helping to release some pressure on demand.  

IC Insights also provides the following forecasts for chips: “By 2024, the average annual growth rate of semiconductor production capacity will be 5.9%. Compared with the average annual increase rate (5.1%) of semiconductor production capacity in the past 5 years (2014 ~ 2019), the growth rate slightly increased.”

Record demand for chips

The semiconductor market is experiencing record demand across all sectors. Chip manufacturers are struggling to keep up, but they are investing in new production lines to meet predicted demand several years from now.

The latest report from IC Insights' McClean Report says that the semiconductor market will shake off the Covid-19 pandemic with 13% growth in 2021.

Semiconductor unit shipments are expected to hit 1,135.3 billion in 2021, fuelled by chips that target connected devices, VR and AR, network and cloud computing systems, contactless payment systems, automotive electronics including autonomous systems and consumer electronics including smartphones.

As technology advances and the world becomes more digital and more connected, chip demand will increase ten-fold over the next few years.

Semiconductor manufacturers are struggling to keep up with demand now but there are signs of life as the IC Insights’ report demonstrates.

The world’s biggest chip companies, including TSMC, UMC, SMIC, Samsung, Micron and SK Hynix are going to play a leading role in how technologies roll out long into the future. There should be no doubt these companies will power our future.

What next for semiconductors?

The prices of semiconductors are expected to increase by 20% in 2021 due to a shortage in production capacity and higher silicon prices.

However, the future may not be silicon at all. Graphene chips are 100 times smaller than silicon chips and thousands of times faster. This technology is in its infancy but it’s showing great promise. We expect big things in the next decade.

We also expect the semiconductor shortage to persist until 2022. Shortages should lift beyond this as production capacity increases from new production lines. Chip makers will need to manage supply and demand better in the future. The current shortage is bad news for everyone. Thankfully, it won’t last forever. Of this we’re certain.

Tags: global semiconductor shortage chip shortage tsmc umc smic samsung micron and sk hynix graphene chips


22 April 2021

Why We're Facing a Global Semiconductor Shortage

capacitor

The world is experiencing a semiconductor shortage at a time when demand for semiconductors is at an all-time high. Manufacturers can’t make enough of them and we’re now seeing this affect the availability of products.

You probably remember last year Sony released the PlayStation 5 and Microsoft released the Xbox Series X. AMD released the Big Navi GPU (RX 6000) and Apple released the iPhone 12 range. What all these products have in common is they were all directly affected by the semiconductor shortage. Demand well and truly exceeded supply.

What’s causing the shortage?

A perfect storm has hit the semiconductor market. It isn’t one thing but a combination of different things that’s causing the shortage today.

The COVID-19 pandemic

When the COVID-19 pandemic hit, car and commercial vehicle sales took a hit. Estimates suggest that sales fell by 50% or more within a single month. In response, car manufacturers scaled back orders for semiconductors and other parts.

At the same time, demand for electronics chips soared as more people spent time working from home and on furlough.

Laptops, smartphones, drones, smartwatches, tablets, kitchen appliances - everything has a semiconductor nowadays. Then you have IT, data centres, internet infrastructure and cloud and edge computing. All are powered by semiconductors.

And so, the factories that were at capacity making semiconductors for cars switched to making semiconductors for electronics. This was a blessing in disguise for factories because semiconductors for electronics have a higher margin. However, it has caused a problem for car manufacturers who now need to ramp up production.

The situation now is this - car sales are picking up and car manufacturers are fighting for orders against electronics manufacturers. Factories are at capacity and can’t make enough to go around. This is feeding through to nearly every sector.

Ultimately, this is the result of poor planning from car makers who cut orders too deeply last year at the beginning of the COVID-19 pandemic.

Manufacturing limitations

Even before the COVID-19 pandemic hit, there weren’t enough factories to meet semiconductor demand. There were long lead times in 2019 because semiconductor demand outpaced the ability of factories to make them. This problem has persisted through to 2021 and has been compounded by the COVID-19 pandemic.

With most factories running at 99-100% capacity, there is very little room for boosted output. You would think that the solution is to build more factories, but this would not solve the problem today or even a year from now because semiconductor fabs take at least a year to build with another 6-12 months in setup time.

Semiconductor manufacturers are investing in new factories, expansion and more efficient technologies, but short-term solutions these are not.

The US is attempting to bring semiconductor manufacturing to US soil to remedy this or at least reduce dependency on foreign suppliers.

US and China trade war

Calls for domestic manufacturing are heating up in the US and China, the result of a trade war brought about mostly by supply chain disruptions related to the COVID-19 pandemic.

Reports in May 2020 that the Trump administration was in talks with Intel, TSMC, and Samsung about building US chip factories proved true. In 2021, with a new president and Biden administration, these talks are persisting.

The reason a technology trade war broke out between the US and China is because the US imposed a 25 per cent tariff on $34 billion of Chinese imports in 2018. There has been bad blood ever since with threats and action on both sides.

This eventually affected the semiconductor supply chain because in 2020 the US turned to export restrictions targeting the semiconductor supply chain to safeguard critical infrastructure in the telecommunications sector. This followed a 2019 ban on the Chinese company Huawei for “national security reasons”.

For example, one of the consequences of export restrictions was that American firms were cut off from chips made by China's Semiconductor Manufacturing International Corporation - the third largest chip maker in the world with 11% market share.

Local production problems

Factory shutdowns due to natural disasters, bad weather and the COVID-19 pandemic have caused semiconductor supply chain issues.

Most of the world’s semiconductors are manufactured in Taiwan. Taiwan Semiconductor Manufacturing Co., the world's largest contract chipmaker, has a 28% market share. The second largest, UMC, also based in Taiwan, has a 13% market share.

Taiwan is experiencing serious water droughts in 2021. Millions of tonnes of water are required to manufacture semiconductors every week. Taiwan Semiconductor Manufacturing is having to bring water in on trucks and UMC are doing the same. This has caused significant drops in manufacturing efficiency.

The US is also experiencing shutdowns. NXP Semiconductors had to shut its plant in Austin, Texas, due to winter weather in February 2021.

Factory shutdowns cause order backlogs and extended lead times. Orders persist and pile in whether a factory is down or not. This squeezes supply chains, causing a shortage.

How long will the semiconductor shortage persist?

We expect the semiconductor shortage to persist through 2021 but ease towards the end of the year as demand for electronics chips decreases as COVID-19 lockdowns end. This will cause a shift in supply from electronics semiconductors to automotive semiconductors which will provide the industry with a much-needed equilibrium.

The world’s largest semiconductor manufacturers - TSMC, UMC, SMIC, Samsung, Intel, SK Hynix - are investing in increased output. Many investments were in the pipeline as early as 2019 and are expected to yield results at the end of 2021.

Right now, there is a serious imbalance in the demand for semiconductors, one that our existing infrastructure is not built to cope with. This imbalance will ease over time. 

How can supply chains continue to meet demand?

If you have been impacted by the semiconductor shortage you can meet demand by partnering with an electronics components distributor like us.

We specialise in the procurement and delivery of semiconductors and parts for a wide variety of industries from the world's leading manufacturers. You can find out more about what we do here. Email us if you have any questions.

 

Tags: semiconductor covid-19 electronic chips long lead times us and china trade war local production problems


03 March 2021

New construction of the smallest microchips using graphene nano-origami

nano chip

Material science and clever engineering has cut the space between components on microchips to nanometres. This has led to significant performance benefits because more components can fit on the chip.

However, there is a limit to how small things can go with current chip design. 7nm is as small as chips will go from here based on existing technology. Why? Because 7nm is the gap between components on a chip. This space is tiny. Going smaller isn’t feasible because we’re working with spaces that are too small.

It’s also incredibly expensive. Prototyping a 7nm chip costs around £80 million and there are only a handful of companies that can do it.

Graphene 'nano-origami' to the rescue

Graphene is a nanomaterial one atom thick. It has been talked about as a revolutionary material for over a decade and now experimental researchers have used it to develop the world’s tiniest microchips using a form of ‘nano-origami’.

The world’s tiniest microchips are 100 times smaller than silicon chips and thousands of times faster. The way they work is instead of having transistors on them, the graphene has kinks in the structure and these kinks act as the transistors.

On this breakthrough, Prof Alan Dalton in the School of Mathematical and Physics Sciences at the University of Sussex, said:

"We're mechanically creating kinks in a layer of graphene. It's a bit like nano-origami. Using these nanomaterials will make our computer chips smaller and faster.

It is absolutely critical that this happens as computer manufacturers are now at the limit of what they can do with traditional semiconducting technology. Ultimately, this will make our computers and phones thousands of times faster in the future.”

Is graphene the future of microchips?

Researchers are calling this breakthrough nano-origami technology "straintronics". It uses nanomaterials as opposed to electronics, eliminating the need for electronic components on the chip. This makes the chips 100 times smaller.

Another benefit to graphene microchips is speed. Graphene conducts electricity 250 times faster than silicon. In fact, it conducts electricity faster than any known substance. It truly is a ‘space-age’ nanomaterial for today.

Instead of building microchips with foreign materials like transistors, researchers have shown another way of doing things. By creating kinks in graphene, structures can be made that replace electronic components including transistors and logic gates.

Another benefit to graphene nano-origami is sustainability. No additional materials are added during the manufacturing process. Production also takes place at room temperature as opposed to high temperature with silicon chips.

The truth is that silicon microchips cannot feasibly go below 7nm. The next step in performance evolution with silicon chips will come from heat management and power density. Graphene is smaller, faster and just as capable. The next step is for manufacturers to develop the technology and take it to market.

Overall, while the immediate future is silicon, we are in no doubt that graphene is the future of microchips. It has too many performance advantages to ignore.   

Tags: graphene nano-origami microchips nanometres straintronics sustainability


01 April 2020

Huawei vs Donald Trump

Senior officials in the Trump administration agreed to new measures to restrict the global supply of chips to China’s Huawei Technologies, sources familiar with the matter said, as the US administration continues its criticism of China over coronavirus.

The move comes as ties between Washington and Beijing grow more strained, with both sides pinning blame for the spread of the disease and retaliation over the expulsion of journalists from both countries.

Under the proposed rule change, foreign companies that use U.S. chipmaking equipment would be required to obtain a U.S. license before supplying certain chips to Huawei, who were blacklisted last year, limiting the company’s suppliers.

usa-china660

Huawei warned on Tuesday that 2020 would be its most difficult year yet due to American trade restrictions which dealt a blow to its overseas sales in 2019 and predicted the Chinese government would retaliate against the United States.

"The Chinese government will not just stand by and watch Huawei be slaughtered on the chopping board," Chairman Eric Xu told reporters at the launch of Huawei's annual report.

The United States in the past has alleged that the Chinese government could use Huawei’s equipment to spy, an accusation rejected by the company.

According to one source, the rule-change is aimed at curbing sales of chips to Huawei by Taiwan Semiconductor Manufacturing Co, a major producer of chips for Huawei’s HiSilicon unit, as well as the world’s largest contract maker.

 “Even if this situation you mentioned happened, Huawei and also other Chinese companies can choose to buy chipsets from Samsung from Korea, MTK from Taiwan, and [Unisoc] in China, and use those companies to develop chips,” Huawei’s Xu said to Reuters.

Some Tech companies do use US made chip manufacturing equipment including Mediatek which has its chips made by TSMC.  According to electronics weekly, TSMC also makes the chips for Huawei’s chip design subsidiary HiSilicon.

Huawei said net profit for 2019 came in at 62.7 billion yuan ($8.9 billion), up 5.6% - its weakest growth in three years, and down from 25% jump a year earlier. Huawei also spent 15.3% of its 2019 revenue – $18.6 billion – on R&D.

It is still to be seen how Huawei will be affected by the US ban, if it is imposed.

Tags: huawei technology chips technology


14 July 2015

IBM Chip Breakthrough. Taking Computers to the Next Level

The future of computer chips has taken a bold step thanks to IBM. The company have announced they have been working on high capacity chips which have 4 times the capacity of anything else available today. Collaborating with Global Foundries, Samsung and SUNY Polytechnic Institute on the project, this is a big deal for the computer and electronics industry as a whole.

The technology they have showcased is of particular significance as there were questions about Moore’s Law and whether transistor density can keep doubling. Currently the industry is switching from 14nm to 10nm but IBM’s latest chip is an absolutely tiny 7nm.

Each new generation usually reduces the area required for components and circuits by about 50%, speeding up the time between switching currents. This latest development from IBM suggests the technology could keep shrinking until at least 2018. These advancements in speed and reduction in size have been made possible by the use of silicon-germanium rather than pure silicon.

After IBM’s manufacturing arm was acquired very recently by Global Foundries, they will be licensing their technology to make chips for Qualcomm and AMD, amongst others. Whether the industry decides to enter the future using silicon-germanium is still up for debate. Whilst it does allow for these ‘super chips,’ it is unknown whether it can be used viably in a manufacturing facility. The wafer that IBM have shown is not a working part or even a prototype, they are test chips with functioning transistors. Even though they have made this big announcement, it is just experimental at this stage.

The race is now on for other manufacturers to catch up with IBM. The big competitor is Intel who have already said they will be working towards 7nm production, but have not specified a date for production or development.

As always we will keep you up to date with the latest developments in the industry as a whole! Subscribe to the blog, follow us on Twitter or connect on LinkedIn.

Tags: ibm computer chips high capacity chips


Component Search

Step 1

Enter Electronic Component part number below.

Step 2

Click the button below.
It’s that easy.

Cyclops Electronics Ltd, Reg. No. SC128862, VAT No. GB561633447

Registered Office: Allan House, 25 Bothwell Street, Glasgow G2 6NL

(Registered in the United Kingdom)

© 2021 Cyclops Electronics

Website by See Green