Tel 01904 415 415

Fax 01904 436 540

Cyclops Electronics uses cookies to ensure that we give you the best experience on our website. For optimal performance please accept cookies. For more information please visit our cookies policy.

Accept and close

Component Search

Blog

RSS Feed

Showing posts tagged 'intel'


24 November 2021

Global chip shortage to impact electronic retailers holiday season

resized shutterstock_1022824408

The holiday season usually marks the start of an electronics sales boon for retailers. Consumers buy more electronics in the lead up to Christmas than at any other time of the year. This year, however, things are different.

This holiday season, the global chip shortage is set to impact electronic retailers, with shortages of popular products like games consoles, graphics cards, smartphones, laptops and tablets likely to persist through to 2022.

Due to problems buying stock, most retailers are bracing themselves for low Christmas electronics goods sales. The global chip shortage means fewer electronics goods are being made, so there is a long lead time from suppliers - some retailers are waiting several months for new stock, only for it to sell out within days.

Consumers should start holiday shopping now 

Chips are in critically short supply this year, which has reduced manufacturing output at many of the world’s biggest factories.

Companies like Samsung, Apple, Intel and AMD are experiencing problems getting the chips they need. Today, some chips have delays of over a year, and inventory supplies for chips are running low, putting pressure on supply chains.

All of this means there is a shortage of in-demand electronics goods, from games consoles to smartwatches. The message is simple - consumers should start holiday shopping now to ensure they can get hold of the electronics they want.

It is also crucial that consumers don’t take stock levels for granted. What’s in stock today might be out of stock tomorrow, and many retailers have lead times of several months for new stock. So, if you need it, you should buy it while you can.

Is the chip shortage being blown out of proportion? 

We are so used to next-day Amazon delivery and seeing shiny electronics on store shelves that chip shortages appear to be a fantasy.

However, the chip shortage is real - manufacturers are struggling to create enough chips, and suppliers can’t get hold of the inventory they need.

Another fox in the henhouse is chip price increases. Companies are bidding through the roof for components, and prices are rising rapidly. Manufacturers don’t absorb these price rises - they are passed down the supply chain, and eventually, they find their way to the consumer (creating consumer inflation).

Chip prices are increasing for several reasons. The obvious reason is supply and demand economics - the less available something is, the higher the price.

Another significant reason is prices for rare earth metals have exploded over the last 12 months, moving nearly 50% higher on average since March.

Summing up the chip shortage

There is a severe chip shortage happening right now that threatens the availability of electronics goods this holiday season. Prices for chips are also skyrocketing, increasing the price of devices like smartphones and smart devices.

All of this is to say, if you plan on buying some chip-reliant electronics this holiday season, you should start shopping now or face being disappointed.

Tags: global chip shortage graphics cards samsung apple intel and amd chip price increases rare earth metals


10 November 2021

Global silicon chip shortage will last until at least 2023

new electronic component image

How long will the global silicon chip shortage last? If you were to ask ten CEO's of leading technology companies, you'd probably get ten different answers.

However, there's one timeframe most CEO's quote…

2023 is the date CEO's are optimistic about 

Intel's CEO, Pat Gelsinger, has given us a realistic timeframe for the chip shortage to end - he says the chip shortage won't end until 2023.

"We're in the worst of it now; every quarter next year, we'll get incrementally better, but we're not going to have supply-demand balance until 2023," Gelsinger told CNBC.

Gelsinger's thoughts echo those of Glenn O'Donnell, a vice president research director at advisory firm Forrester, who says the chip shortage will last until 2022.

"Because demand will remain high and supply will remain constrained, we expect this shortage to last through 2022 and into 2023," O'Donnell wrote in a blog in March.

Daimler chairman Ola Källenius also believes the chip shortage could last until 2023.

"Several chip suppliers have been referring to structural problems with demand," Källenius told reporters during a roundtable event ahead of the Munich IAA car show. "This could influence 2022 and (the situation) may be more relaxed in 2023."

What will chip demand look like in 2022-2023?

In July, the CEO of STMicroelectronics provided insight into what we can expect in 2022-2023, "Things will improve in 2022 gradually, but we will return to a normal situation ... not before the first half of 2023," he said in an interview.

The global silicon chip shortage has led to car plants shutting down, paused manufacturing lines and delayed product launches. It isn't a short-term problem, and no one knows for sure when supply will start catching up with demand.

All industries and companies that use chips have been affected by the shortage - even Samsung, the world's biggest computer-chip manufacturer, has been affected by it, delaying the launch of several Galaxy and Note smartphones.

Most experts agree that 2022 will echo 2021, with moderate-extreme shortages of integrated circuits and chips, as well as certain active and passive components. Prices are also expected to rise in line with raw material costs.

2023 may be the year that supply starts meeting demand, but it will require the mass opening of foundries and factories. Investment in new plants and manufacturing lines is ongoing, with new fabs set to open in the next two years.

In 2023, we hope to see regular chip inventory levels and average delays of about three months to replenish components. At the moment, some components have delays over a year, and inventory supplies for chips are running low.

Keeping supply chains moving

The best way to keep supply chains moving is to partner with an electronic components distributor like us. We can source chips from around the world, tapping into stockpiles and inventory that isn’t available to the average company.

If you are experiencing an electronic component shortage, we can help. Email us if you have any questions or call us on 01904 415 415 to chat with our team.

Tags: silicon chip intel chip shortage stmicroelectronics manufacturing delayed shortage integrated circuits raw material costs foundries factories


29 September 2021

Communications including 5G will drive the components market

5G

According to IC Insights, the communication sector’s share of integrated circuit sales reached 35% in 2020 and is expected to grow to 36.5% by 2025. For perspective, the automotive sector’s share of integrated circuit sales was 7.5% in 2020 and will grow to 9.8% by 2025 - significantly less than communications.

Industry tailwinds

What’s driving such high demand for ICs in the communications sector?

There are four big tailwinds:

  • 5G
  • Edge computing
  • Internet of Things
  • AI (artificial intelligence), MI (machine learning) and data analytics

5G

5G is the main driver for components demand, with 5G infrastructure rollout happening slowly, but surely. We are nowhere near a complete version of 5G, and networks are in a race against time to deliver a reliable service.

The first step for networks is replacing low-band 4G spectrum, followed by mid-band spectrum that uses 2.5, 3.5 and 4.5 GHz, enabling faster data speeds. The final step is the rollout of millimetre wave, which enables true 5G speeds. Millimetre wave also happens to be a precursor for next-generation 6G.

On top of 5G infrastructure rollout you have more 5G-enabled devices coming to market, such as smartphones, tablets and laptops. Smartphones, in particular, are leading the way for 5G adoption, putting faster data in our hands.

The rapid growth in IC demand in the communications sector also stretches to other components like modems, memory and antennas. 5G isn’t just an IC boon - it’s a boon for all the electronic components needed for 5G. 

Edge computing

Second to 5G we have edge computing, which by a miraculous twist of fate is needed to deliver a 5G experience (and needs a whole lot of components).

Edge computing puts compute capabilities relatively close to end users and/or IoT endpoints. In doing so, it reduces latency, while 5G delivers faster data speeds, providing a seamless experience on certain devices.

Internet of Things

IoT describes a network of connected smart devices that communicate with each other. For example, a vital sign monitor in a hospital could communicate with medicine dispensers and automate medicine dosages for doctors.

The Internet of Things has been talked about as a trend for several years, but we now have real applications that are useful.

AI (artificial intelligence), MI (machine learning) and data analytics

AI (artificial intelligence), MI (machine learning) and data analytics require enormous, powerful data centres to power them. These data centres require significant investment in chips, memory and other electronic components.

Also, AI, MI and data analytics need cloud computing, edge computing and in some cases 5G to deliver a real-time experience.

The future

By 2025, the communications sector is forecast to have a 36.5% usage share of integrated circuits, making it the biggest consumer of semiconductors.

Demand for integrated circuits, discrete circuits, optoelectronics and sensors will grow to an all-time highs thanks to the industry tailwinds in this article. The future is bright, but to stay ahead, a robust supply chain will be needed.

Electronic components distributors like Cyclops are helping supply meet demand, while the communications sector battles to secure chip orders. Call us today at +44 (0) 01904 415 415 or email sales@cyclops-electronics.com 

Tags: communication automotive ics 5g edge computing internet of things components ic demand modems memory and antennas artificial intelligence machine learning data analytics integrated circuits


01 September 2021

Component Prices Rise 10% to 40% - But why?

pexels-photo-1105379

While component price rises are expected when demand outstrips supply, the scale of recent increases has come as a shock to many businesses.

In its Q3 Commodity Intelligence Quarterly, CMarket intelligence platform Supplyframe reports that some electronic components have seen prices rise by as much as 40%, making it uneconomical for products to be made.  

In particular, semiconductors, memory, and modems are seeing 10 to 40% price increases, exceeding what most analysts envisioned for 2021.

Why are prices rising?

Price rises start with materials. There are long lead times for many raw materials, causing shortages. Add rising commodity prices and difficulties transporting products and you have a disrupted manufacturing economy.

You also have to factor in the impact of the coronavirus pandemic, which has caused labour shortages and disrupted the manufacturing economy with shutdowns.

Logistics is also a big fly in the ointment for electronic components. The industry is recovering from COVID-induced shutdowns and travel restrictions are causing problems at borders, creating delays that ripple through the supply chain.

Supply and demand

The bulletproof economics of supply and demand also rule the roost for electronic components, and demand is higher than it has ever been.

We are in a situation today where most electronic components manufacturers are running at 99-100% capacity and can’t keep up with demand.

Demand is outstripping supply for chips, memory and communications components like integrated circuits, discrete circuits, optoelectronics and sensors, creating a bidding war as manufacturers scramble to get what they need.

Growing demand for new technologies

Emerging technologies like artificial intelligence, machine learning, virtual reality, augmented reality and edge computing are fuelling demand for smarter chips and data centre modernisation, while technologies like 5G and Wi-Fi 6 are demanding infrastructure rollout, which requires significant investment.

Across the board, technology is booming. Manufacturers are making more products for more people, and they must do so while balancing costs at a time when component prices are rising - no easy feat even for established businesses. 

Pressure relief

Everyone is raising prices in line with their own cost increases, from semiconductor manufacturers to outsourced fabs and suppliers. At 10 to 40%, these increases are putting pressure on supply chains and businesses.

How many price increases will target markets absorb? How can we sustain production without significant margin pressure? These are the challenges facing manufacturers, who are stuck between a rock and a hard place right now.

There are a few solutions:

  • Equivalents: Source equivalent components from different brands/makers/OEMs that meet size, power, specification, and design standards.
  • Use an electronic components distributor: Distributors are the best-connected players in the industry, able to source hard-to-procure and shortage components thanks to relationships with critical decision-makers.

Prices will fizzle down, eventually

Although research published by Supplyframe says pricing challenges will remain through early 2023, they won’t last forever. Price rises should fizzle out towards the end of 2021 as manufacturers catch up to orders and reduce disruption.

If you are experiencing an electronic component shortage, we can help. Email us if you have any questions or call us on 01904 415 415 for a chat with our team.

Tags: electronic components semiconductors memory price rises rising commodity prices coronavirus pandemic integrated circuits discrete circuits optoelectronics sensors artificial intelligence machine learning virtual reality augmented reality and


26 May 2021

Who are the biggest players in the semiconductor industry?

semiconductor 2

Over the next decade, demand for semiconductors is going to go supersonic thanks to secular and cyclical tailwinds.

Semiconductors are the building blocks of the information age; every device that will be ‘connected’ needs a semiconductor. The companies that manufacture semiconductors are the unsung heroes of the future. But who are they?

In this article, we will briefly cover the biggest players in the semiconductor industry.

Foundries

Foundries concentrate on manufacturing and testing physical products for fabless companies. Some companies, like Intel, are both fabless and foundry, meaning they design and make their chips. Foundries often serve as a non-competitive manufacturing partner for fabless companies. The following list contains the biggest foundries:

TSMC

TSMC (Taiwan Semiconductor Manufacturing Company) is the world’s largest semiconductor manufacturer by a significant margin. They are expected to capture 56% of the semiconductor market in 2021 (up from 54% in 2020). 

UMC

UMC (United Microelectronics Corporation) is a Taiwanese company. They are the second largest semiconductor foundry in the world behind TSMC. UMC specialise in mature nodes, such as 40nm nodes and other speciality logic.

SMIC

SMIC (Semiconductor Manufacturing International Corporation) is a Chinese company. They are the third largest semiconductor manufacturer in the world. They specialise in process nodes from 0.35 micron to 14 nanometres.

Samsung

Samsung Electronics is a South Korean company. They are the world’s largest manufacturer of DRAM and the world’s fourth largest semiconductor manufacturer. They are expected to occupy 18% of the semiconductor market in 2021.  

Micron

Micron is an American company. They are the second largest manufacturer of DRAM (dynamic random-access memory) behind Samsung. DRAM is semiconductor memory used in consumer electronics, computing equipment and IoT devices.

SK Hynix

SK Hynix is a South Korean company. They are the world’s third largest manufacturer of DRAM and a leading manufacturer of NAND flash memory. In 2019, they developed HBM2E, the world’s fastest high bandwidth memory.

NXP Semiconductors

NXP Semiconductors is a Dutch-American company. They manufacture ARM-based processors, microprocessors and logic across 8, 16 and 32-bit platforms. Their products are used in automotive, consumer, and industrial markets.

Powerchip

Powerchip Technology Corporation is a Taiwanese company. They manufacture DRAM and memory chips, semiconductors and integrated circuits. They use a 300mm wafer production technology which can produce advanced and mature chips.

ON Semiconductor

ON Semiconductor is an American company. They design and fabricate chips and microprocessors for automotive, aerospace, industrial, cloud and Internet of Things devices. They have over 45 years’ of experience in the foundry business.

Fabless companies

“Fabless” means outsourced fabrication. Fabless companies concentrate on the research and development of chips and semiconductors. They then outsource the manufacturing of the product to a foundry. This relationship is non-competitive, and the foundry is normally a silent partner. The following list contains the biggest fabless companies:

MediaTek

MediaTek is a Taiwanese company. By market share, they are the world’s leading vendor of smartphone chipsets. They are also a leading vendor of chipsets for other consumer electronics including tablets and connected TVs.

Qualcomm

Qualcomm is an American company. They are the world’s biggest fabless company. Their product catalogue includes processors, modems, RF systems, 5G, 4G and legacy connectivity solutions. They are best-known for Snapdragon Series processors.

Broadcom

Broadcom is an American company. Depending on which figures you read, they are either the first or second largest fabless company in the world. Broadcom's products serve the data centre, networking, software, broadband, wireless, and storage and industrial markets.

NVIDIA

NVIDIA is an American company. They are the market leader for high-end graphics processing units (GPUs). In 2020, NVIDIA GeForce GPUs accounted for 82% of GPU market share. This is significantly more than AMD Radeon graphics cards, which accounted for 18%.

AMD

AMD is an American company. They design high-performance GPUs and processors for computers, where they command the second biggest market share behind Intel. Their GPUs compete against NVIDIA’s but are not considered as powerful.

Himax

Himax is a Taiwanese company. They are a leading vendor of automotive chips and semiconductors for connected devices. Their semiconductors are used in TVs, monitors, laptops, virtual reality headsets, cameras and much more.

Realtek

Realtek is a Taiwanese company. They are a fabless semiconductor company focused on developing IC products (integrated circuits). They are best-known for SoCs (System-on-Chips) network (Ethernet) and wireless (Wi-Fi) interface controllers.

Integrated device manufacturers

Some companies have foundry and fabless arms. These companies often design and fabricate their own products or design and fabricate chips for others. These integrated device manufacturers (IDMs for short) blur the line between foundry and fabless with an in-house production process that utilises little if any outsourcing. IDMs include:

Intel

Intel is an American company. They design and manufacture their own chips which they package into CPUs. Intel’s market share in the CPU market has declined in recent years, but they remain one of the top semiconductor manufacturers.

Analog Devices

Analog Devices is an American company. They have a 150mm wafer fab and a 200mm wafer fab. They have fabless production facilities and have made numerous fabless acquisitions over the years, such as OneTree Microdevices in 2017.

Texas Instruments

Texas Instruments is an American company. They have 14 manufacturing sites including silicon foundries. They specialise in the production and manufacture of wafers, digital signal processors, integrated circuits and embedded processors.

Overall

You may have noticed that the US and Taiwan dominate the semiconductor industry on the foundry and fabless side. Among the biggest semiconductor companies, the largest proportion are based in the United States. However, Taiwan is the foundry king, with the two biggest players based there (TSMC and UMC).

Semiconductors are used in all electronics that require computing power, including smartphones, PCs, and data centres and cars. A surge in demand for chip-based products will fuel the need for more semiconductors in the future. It will be up to the big players on this list to meet that demand and power our future.

Tags: semiconductors foundries tsmc umc smic samsung micron sk hynix nxp semiconductors powerchip on semiconductor fabless companies mediatek qualcomm broadcom nvidia amd himax realtek intel analog devices texas instruments


07 April 2021

NXP Announces i.MX 9 and i.MX 8 processor line for Intelligent Multi-sensor Applications

NXP

NXP Semiconductors has announced a new line of edge processors that deliver a giant leap in performance and security at the edge.

As edge computing rapidly evolves around us and demand for edge computing soars, performance demands are increasing at an exponential rate. This requires a new approach to security, power consumption and performance. Existing edge processors offer a solution now but are not ready for the next generation of real-time data.

Technologies like machine learning, artificial intelligence, robotics, autonomous driving and next-gen wireless infrastructure all depend on the edge. NXP Semiconductors is meeting the challenge with new i.MX 9 and i.MX 8 processor lines.

i.MX 8ULP and i.MX 8ULP-CS

The ultra-low power i.MX 8ULP and i.MX 8ULP-CS (cloud secured) Microsoft Azure Sphere-certified processors have the EdgeLock secure enclave, a pre-configured security subsystem that simplifies complex security technologies and helps designers avoid costly errors. It automates the following security functions:

  • Root of trust
  • Run-time attestation
  • Trust provisioning
  • Secure boot
  • Key management
  • Cryptographic services

The i.MX 8ULP-CS is Microsoft Azure Sphere-certified with Microsoft Pluton enabled on EdgeLock for highly secure hardware. With Azure Sphere, it has chip-to-cloud security built in, enabling use in a wide range of applications.

Both i.MX processors utilise Energy Flex architecture, which delivers as much as 75% improved energy efficiency compared to previous generations.

They have heterogeneous domain processing and 28nm FD-SOI process technology, making them among the most advanced edge chips in the world. The processors have one or two 1GHz Arm Cortex-A35 processors, a 216MHz Cortex-M33 real-time processor and a 200MHz Fusion DSP for low-power voice and sensor hub processing.

Every Azure Sphere-certified i.MX 8ULP-CS device also gets ongoing OS and security improvements for over ten years.

i.MX 9

The i.MX 9 series is NXP Semiconductors’ range-topping high-performance edge processor for intelligent multi-sensor applications.

The i.MX 9 debuts a new generation of processors that have an independent MCU-like real-time domain and dedicated multi-sensory data processing engines for graphics, image, display, audio and voice. The i.MX 9 series also features EdgeLock secure enclave, Energy Flex architecture and hardware neural processing.

The i.MX 9 is for the next generation of edge computing applications including machine learning and artificial intelligence. It’s the first NXP line to use the Arm Ethos U-65 microNPU which enables low-power machine learning.

Importantly, Azure Sphere chip-to-cloud security is enabled within the i.MX 9 line, providing a clear upgrade path from the i.MX 8 series.

EdgeLock secure enclave is the big ticket item of the new processor lines, combining complex security technologies into a single pre-configured platform. With device-wide security intelligence, it provides a simplified path to certification, enabling non-stop trusted management services and applications.

So what?

With the release of these new processors, organisations of any size can now pursue IoT development and real-time technologies with the confidence that NXP and Microsoft have laid out a foundation of security via Microsoft Azure. The low-power requirements and chip-to-cloud security deliver innovation in the right areas.

You can find out more about the processors here.

If you are looking for NXP parts contact us today! sales@cyclops-electronics.com 

Tags: edge computing machine learning artificial intelligence robotics wireless infrastructure nxp semiconductors iot


20 August 2015

New Tech from IDF 2015

The Intel Developer Forum is taking place as we speak where all the latest tech development from Intel is announced. The tech glitterati have descended on San Francisco to hear all the announcements from CEO Brian Krzanich and pals.
The latest announcements include wearables, safety tech, cooking and even robotic spiders!

Curie –

This is a real breakthrough for the world of wearables. It is a piece of super small tech that fits on a solution the size of a button! Inside is the Intel Quark system which is able to integrate the power of a full sized computer into a single chip. Thanks to its tiny, yet powerful properties it can be integrated into a range of wearables including jewellery, clothing, keyrings and even actual buttons. The little device even has a motion sensor, Bluetooth, radio and battery charging capabilities – don’t be fooled by the tiny size, this thing can pack a punch!

Spiderbots –

These were used to demonstrate the way the Curie module works, in particular the gesture recognition technology. Intel CEO Brian Krzanich had the Curie attached to a bracelet and by moving his arm was able to make the spiderbots move and change colour of their LEDs. It works by having an accelerometer and gyroscope connected which detects arm movements to allow you to unleash your spiderbot army!

Fossil Android Watch –

There is still not much been released about the Fossil watch powered by Intel, first announced last year, we now know what it will potentially look like but the actual full spec of the watch is still a mystery.  They are ‘traditional’ looking watches with leather straps and a silver metallic finish. Demonstrated was a watch with a round tire face featuring an LCD screen. There were generic functions shown such as step counters and message accessibility but anything else wasn’t up for show. All we were told is that it will come in a few different colour combinations and be released in time for the holiday. Guess we’ll have to wait for Santa to bring us one to find out the full spec!

Home Cooking –

Anyone who keeps up to date with Masterchef will be familiar with the concept of sous vide cooking as it is de rigeour for top chefs. The process involves vacuum sealing food then cooking it in a water bath so the food slowly reaches the temperature of the water, never exceeding it. Intel have been working with Anova Culinary and Nomiko to create household versions called immersion circulators for all the next Michel Roux Jrs out there!!

Tags: intel idf 2015 intel curie fossil


14 August 2015

Intel and Samsung - Who's winning?

Are Intel’s days at the top coming to an end?

Distance has dropped between Samsung and Intel in the official semiconductor figure results from IC Insights– in the 2nd quarter

Samsung have risen 10% between Q1 and Q2 2015 to a rather impressive $10.3 billion. Intel are only up 3% to $11.9 billion so the race is on to see if Intel can keep holding onto that top spot.

Samsung have managed to move to DRAM and NAND Flash which are more readily used in smartphones. The rapid and increasing growth of the smartphone market, particularly in emerging markets, means Samsung made a very smart decision in choosing to focus on memory chips. Intel, on the other hand, has remained focused on PC/laptops which is why their own growth is quite limited this quarter.

Although Intel and Samsung have had rises in the last quarter, the rest of the top 5 have declined. Particularly significant is

Qualcomm’s decline of 13% and is looking at posting a semiconductor sales decline of 20% in the 2015 calendar year. They are still at number 5 on the Q214 rankings but it isn’t looking great for this American company.

As well as the 10% rise this quarter, Samsung have also posted a record high in their quarterly chip sales of 11.29 trillion won. The rest of the top 20 aren’t really a surprise – and it did take over $2.2 billion in sales just to get into the top 20!

Tags: samsung intel semiconductor industry


26 May 2015

Top 20 Semiconductor Rankings

The rankings for the top 20 semiconductor sales for Q1 2015 have been released. Intel and Samsung continue to dominate, taking 1st and 2nd place respectively but there are very few surprises in the rankings. What is interesting however is that the top 4 all have completely different business models:

Intel – a pureplay IDM

Samsung – Vertically integrated IC supplier

TSMS – a pureplay Foundry

Qualcomm – A fabless company

Each have made a huge amount of money in the first quarter, especially TSMC with their sales from 1Q14 to 1Q15 increasing a huge 44%! Intel's sales have remained flat but they are still on top and ahead of Samsung by a fair amount.

The majority of the companies are US based with 7 of them hailing from North America. Of the rest 4 are in Japan, 3 in Taiwan, 3 in Europe, 2 in South Korea and 1 in Singapore. So there is a fairly broad mixture of locations showing that not one country is dominating completely.

With all the mergers and acquisitions in the pipeline such as NXP & Freescale and Microchip & Micrel, and no doubt there will be many other M&As occurring which we have no clue about yet, this ranking is likely to change considerably in the future.

 

Tags: semiconductor sales samsung intel


20 May 2015

Intel and Altera

Is it back on between Intel and Altera?

 

Intel are looking at a potential $17 billion plus buyout of Altera. Initial talks between the two companies ended in April when Altera rejected an offer of $54 per share – shares were at $35 in March before the potential deal was leaked.

It would appear that Intel want to diversify from just making chips for software purposes, such as personal computers and smartphones, and Altera's products would let them do this. Altera specialise in programmable chips for consumer electronics and servers.

Thinking of Intel's biggest customers, Microsoft, Google, Amazon etc. not only do they want the software that Intel currently provides, they also want the flexibility of changing their hardware as the software develops. The only way this can be done is using the programmable chips Altera make. It is easy to see why Intel want this technology under their remit. Owning their own chip technology and having access to programmable chips too would allow them to offer a complete package.

Intel have already announced they were beginning to make custom chips with programmable cores. If they are receiving a large demand from their clients for them, acquiring a company that already has the technology and expertise makes sense. This may be why Intel are reigniting the conversation with Altera. Neither company has commented on the potential deal or if communications are even back on however!

Keep up to date with the latest developments and other industry news by following Cyclops Group on Twitter, LinkedIn and Facebook.

Source: https://fortune.com/2015/05/18/intel-altera-again/

Tags: intel altera semiconductors programmable chips


Component Search

Step 1

Enter Electronic Component part number below.

Step 2

Click the button below.
It’s that easy.

Cyclops Electronics Ltd, Reg. No. SC128862, VAT No. GB561633447

Registered Office: Allan House, 25 Bothwell Street, Glasgow G2 6NL

(Registered in the United Kingdom)

© 2021 Cyclops Electronics

Website by See Green