Blog
RSS FeedShowing posts for August 2019
07 August 2019
World's thinnest Gold revealed
Scientists at the University of Leeds have created a new form of gold which is just two atoms thick which will make it the thinnest unsupported gold ever created.
Dubbed 2D gold, the material the material measures only 0.47 nanometers thick, which is roughly a million times thinner than a human finger nail, and could have a profoundly positive impact on the electronic industry and in the medical field.
Laboratory tests show that the ultra-thin 2-D gold is 10 times more efficient as a catalytic substrate than the currently used gold nanoparticles, which are 3-D materials with the majority of atoms residing in the bulk rather than at the surface.
The lead author of the paper, Dr. Sunjie Ye, from Leeds' Molecular and Nanoscale Physics Group and the Leeds Institute of Medical Research, said: "This work amounts to a landmark achievement. Not only does it open up the possibility that gold can be used more efficiently in existing technologies, it is providing a route which would allow material scientists to develop other 2-D metals."
The flakes are extremly flexible, meaning they could form the basis of electronic components for bendable screens, electronic inks and transparent conducting displays. Standard benchmark tests revealed that gold nanoscale sheets were ten times more efficient than the gold nanoparticles conventionally used in industry.
Professor Evans thinks there will inevitably be comparisons made between the 2-D gold and the very first 2-D material ever created—graphene, which was fabricated at the University of Manchester in 2004.
He said: "The translation of any new material into working products can take a long time and you can't force it to do everything you might like to. With graphene, people have thought that it could be good for electronics or for transparent coatings—or as carbon nanotubes that could make an elevator to take us into space because of its super strength"
He thinks that with 2-D gold they have got some very definite ideas about where it could be used, particularly in catalytic reactions and enzymatic reactions. "We know it will be more effective than existing technologies—so we have something that we believe people will be interested in developing with us." he added.