Tel 01904 415 415

Fax 01904 436 540

Cyclops Electronics uses cookies to ensure that we give you the best experience on our website. For optimal performance please accept cookies. For more information please visit our cookies policy.

Accept and close

Component Search

Blog

RSS Feed

Showing posts for May 2021


26 May 2021

Who are the biggest players in the semiconductor industry?

semiconductor 2

Over the next decade, demand for semiconductors is going to go supersonic thanks to secular and cyclical tailwinds.

Semiconductors are the building blocks of the information age; every device that will be ‘connected’ needs a semiconductor. The companies that manufacture semiconductors are the unsung heroes of the future. But who are they?

In this article, we will briefly cover the biggest players in the semiconductor industry.

Foundries

Foundries concentrate on manufacturing and testing physical products for fabless companies. Some companies, like Intel, are both fabless and foundry, meaning they design and make their chips. Foundries often serve as a non-competitive manufacturing partner for fabless companies. The following list contains the biggest foundries:

TSMC

TSMC (Taiwan Semiconductor Manufacturing Company) is the world’s largest semiconductor manufacturer by a significant margin. They are expected to capture 56% of the semiconductor market in 2021 (up from 54% in 2020). 

UMC

UMC (United Microelectronics Corporation) is a Taiwanese company. They are the second largest semiconductor foundry in the world behind TSMC. UMC specialise in mature nodes, such as 40nm nodes and other speciality logic.

SMIC

SMIC (Semiconductor Manufacturing International Corporation) is a Chinese company. They are the third largest semiconductor manufacturer in the world. They specialise in process nodes from 0.35 micron to 14 nanometres.

Samsung

Samsung Electronics is a South Korean company. They are the world’s largest manufacturer of DRAM and the world’s fourth largest semiconductor manufacturer. They are expected to occupy 18% of the semiconductor market in 2021.  

Micron

Micron is an American company. They are the second largest manufacturer of DRAM (dynamic random-access memory) behind Samsung. DRAM is semiconductor memory used in consumer electronics, computing equipment and IoT devices.

SK Hynix

SK Hynix is a South Korean company. They are the world’s third largest manufacturer of DRAM and a leading manufacturer of NAND flash memory. In 2019, they developed HBM2E, the world’s fastest high bandwidth memory.

NXP Semiconductors

NXP Semiconductors is a Dutch-American company. They manufacture ARM-based processors, microprocessors and logic across 8, 16 and 32-bit platforms. Their products are used in automotive, consumer, and industrial markets.

Powerchip

Powerchip Technology Corporation is a Taiwanese company. They manufacture DRAM and memory chips, semiconductors and integrated circuits. They use a 300mm wafer production technology which can produce advanced and mature chips.

ON Semiconductor

ON Semiconductor is an American company. They design and fabricate chips and microprocessors for automotive, aerospace, industrial, cloud and Internet of Things devices. They have over 45 years’ of experience in the foundry business.

Fabless companies

“Fabless” means outsourced fabrication. Fabless companies concentrate on the research and development of chips and semiconductors. They then outsource the manufacturing of the product to a foundry. This relationship is non-competitive, and the foundry is normally a silent partner. The following list contains the biggest fabless companies:

MediaTek

MediaTek is a Taiwanese company. By market share, they are the world’s leading vendor of smartphone chipsets. They are also a leading vendor of chipsets for other consumer electronics including tablets and connected TVs.

Qualcomm

Qualcomm is an American company. They are the world’s biggest fabless company. Their product catalogue includes processors, modems, RF systems, 5G, 4G and legacy connectivity solutions. They are best-known for Snapdragon Series processors.

Broadcom

Broadcom is an American company. Depending on which figures you read, they are either the first or second largest fabless company in the world. Broadcom's products serve the data centre, networking, software, broadband, wireless, and storage and industrial markets.

NVIDIA

NVIDIA is an American company. They are the market leader for high-end graphics processing units (GPUs). In 2020, NVIDIA GeForce GPUs accounted for 82% of GPU market share. This is significantly more than AMD Radeon graphics cards, which accounted for 18%.

AMD

AMD is an American company. They design high-performance GPUs and processors for computers, where they command the second biggest market share behind Intel. Their GPUs compete against NVIDIA’s but are not considered as powerful.

Himax

Himax is a Taiwanese company. They are a leading vendor of automotive chips and semiconductors for connected devices. Their semiconductors are used in TVs, monitors, laptops, virtual reality headsets, cameras and much more.

Realtek

Realtek is a Taiwanese company. They are a fabless semiconductor company focused on developing IC products (integrated circuits). They are best-known for SoCs (System-on-Chips) network (Ethernet) and wireless (Wi-Fi) interface controllers.

Integrated device manufacturers

Some companies have foundry and fabless arms. These companies often design and fabricate their own products or design and fabricate chips for others. These integrated device manufacturers (IDMs for short) blur the line between foundry and fabless with an in-house production process that utilises little if any outsourcing. IDMs include:

Intel

Intel is an American company. They design and manufacture their own chips which they package into CPUs. Intel’s market share in the CPU market has declined in recent years, but they remain one of the top semiconductor manufacturers.

Analog Devices

Analog Devices is an American company. They have a 150mm wafer fab and a 200mm wafer fab. They have fabless production facilities and have made numerous fabless acquisitions over the years, such as OneTree Microdevices in 2017.

Texas Instruments

Texas Instruments is an American company. They have 14 manufacturing sites including silicon foundries. They specialise in the production and manufacture of wafers, digital signal processors, integrated circuits and embedded processors.

Overall

You may have noticed that the US and Taiwan dominate the semiconductor industry on the foundry and fabless side. Among the biggest semiconductor companies, the largest proportion are based in the United States. However, Taiwan is the foundry king, with the two biggest players based there (TSMC and UMC).

Semiconductors are used in all electronics that require computing power, including smartphones, PCs, and data centres and cars. A surge in demand for chip-based products will fuel the need for more semiconductors in the future. It will be up to the big players on this list to meet that demand and power our future.

Tags: semiconductors foundries tsmc umc smic samsung micron sk hynix nxp semiconductors powerchip on semiconductor fabless companies mediatek qualcomm broadcom nvidia amd himax realtek intel analog devices texas instruments


19 May 2021

Wireless-to-DALI Gateway specification from DALI Alliance

pexels-photo-1105379

The DALI Alliance (DiiA) has published specifications for linking wireless-to-DALI gateways to DALI wired products and Bluetooth mesh and Zigbee ecosystems.

The two new specifications published by the DALI Alliance are Part 341, covering Bluetooth Mesh to DALI Gateways, and Part 342, describing Zigbee to DALI Gateways. You can download the specifications you need for your project here.

Wireless-to-DALI gateways

Wireless-to-DALI gateways allow the incorporation of DALI luminaires and other DALI devices into wireless control networks.

The new specifications have well-defined parameters to enable consistent lighting behaviour, so that high-quality smart lighting control systems can be designed. Part of the specifications cover data and analytics, enabling DALI control gear to log and report energy and diagnostics data to a control interface.  

Many lighting systems already leverage DALI lighting control. DALI permits the digital controlling of each lighting fixture in a given lighting system. It enables a two-way communication protocol so fixtures can communicate. These systems are flexible, scalable and built for the future with Internet of Things (IoT) compatibility.

Why publish specifications?

The new specifications have effectively standardised how to link wireless-to-DALI gateways with connectivity solutions. This provides greater flexibility and creative freedom for lighting designers and OEMs. It also enables a consistent quality in installations.

The DALI Alliance, Bluetooth SIG and Zigbee Alliance have collaborated on this effort and all parties are delighted to have created new standards.

Here’s what each party had to say on the announcement:

The DALI Alliance

“Publishing the specifications for Wireless to DALI Gateways is a major milestone that signals our intention to allow DALI to operate within wireless networks when the need arises,” said Paul Drosihn, general manager of the DALI Alliance. “The move extends choice, convenience and creative possibilities to the user base of DALI wired systems and to those implementing new wired and wireless lighting control systems.”

 

Bluetooth SIG

“The standardized gateway between DALI lighting products and Bluetooth mesh lighting control networks will further accelerate the adoption of advanced IoT-enabled intelligent lighting systems,” said Mark Powell, Bluetooth SIG chief executive officer. “Providing valuable energy efficiencies and a more comfortable and productive experience for occupants, these sensor-rich lighting systems will also enable more efficient operation of other building systems, including HVAC and security.”

Zigbee Alliance

“The Zigbee to DALI Gateway brings together the market-proven, cost-effective, low-power wireless Zigbee technology, with the internationally standardized and widely used wired DALI lighting protocol, to deliver optimized and expanded wireless lighting solutions to the IoT market. When it comes to lighting-control networks, many of our members are invested across categories and applications, especially in the commercial space,” said Chris LaPré, Technology Lead, Zigbee Alliance. “As they continue to lead the market and innovate in new directions afforded by the IoT, we support broadening lighting possibilities as manufacturers drive standards that matter and deliver lighting solutions that keep the world connected. ”

You can find out more about the new release of specifications for standardised wireless-to-DALI gateways and DALI-over-wireless devices here.

Tags: dali alliance zigbee ecosystems internet of things dali alliance bluetooth sig zigbee alliance


12 May 2021

Equivalents keep the supply chain moving in uncertain markets

pexels-photo-3520692

In uncertain markets, the demand for specific, branded components tends to outstrip supply. We have seen this recently with the semiconductor shortage, where specific chips are hard to come by at a time when they are needed.

Equivalent components, also known as equivalents in the industry, provide an immediate solution. These ‘generic’ parts can be specified when specific parts can’t be sourced and in cases where parts no longer need to be from one brand.

Successive cycles of electronic component shortages (especially in the semiconductor sector) has led to manufacturers specifying equivalents on their order sheets. Outside of sectors that have precise specifications for safety, like aerospace and biotechnology, these equivalents are helping to keep supply chains moving.

Equivalent in quality and specification

One of the common misconceptions about equivalent components is that they are somehow castoffs or second-best components. This is untrue. They are simply equivalent components from a different brand/maker/OEM.

The term ‘equivalent’ is used to describe components that can be used as substitutes for specific components. They meet the size, power, specification and design standards set by design teams. They are ‘like-for-like’ on the spec sheet.

The quality aspect of equivalents is only a concern when the electronic component distributor cannot verify the provenance of the components. At Cyclops, we only source genuine, verifiable components. We would rather expand our supplier base than source a batch of equivalents that we cannot be sure of.

A pragmatic approach to managing supply

Companies that are fixated on using specific components run the risk of running into roadblocks. There is a global shortage for chip passives and discrete semiconductors and this problem is expected to last through 2021.

Specifying equivalents is a pragmatic approach to managing supply chains in uncertain markets for several reasons. For the customer, generic specification reduces supply chain risk. It allows the customer to meet demand requirements without the risk of backorders, supply constraints, or being outbid by other companies.

The biggest benefit is flexibility. Rather than be tied to what is in stock and what you can source from an OEM, you can specify a value and chip size for passives, or a generic diode designation, and let your distributor source equivalents.

If you want to give yourself the best chance of meeting demand for scarce electronic components, equivalents will need to form part of your supply chain. Otherwise you run the risk of disruption and higher procurement costs.

How we can help you

Cyclops specialises in the procurement and delivery of electronic components and parts for a wide variety of industries from the world's leading manufacturers.

We can source equivalent components for you from our global network. All we need is a value and chip size for passives or a generic diode designation for actives. We will work with your spec sheets and source high-quality, equivalent components.

If you are currently experiencing an electronic component shortage, we can help. Email us if you have any questions or call us on 01904 415 415 for a chat with our team.

Tags: uncertain markets supply equivalent components aerospace biotechnology substitutes flexibility


06 May 2021

Top Manufacturer Lead Time Update

Click the image below to view our full top manufacturers' lead time update. 

Need help finding those hard-to-find and obsolete components? 

Get in touch today!

Call: 01904 415 415

Email: sales@cyclops-electronics.com

Website: https://www.cyclops-electronics.com/

front image

Tags: 2021 leadtime forecast fujitsu infineon micron nxp on semiconductor samsung st texas instruments toshiba vishay manufacturer advanced analog discrete and lighting standard logic and linear volatile memory non-volitile memory embedded pr


05 May 2021

Keeping pace with high power terminal block demand

EV Charging#

High power terminal block demand is soaring with the buildout of EV charging infrastructure. The reason is simple - high current requires high power terminal blocks, making these components essential for EV charging stations.

The rapid growth in the adoption of electric vehicles is fuelling demand for high power terminal blocks beyond what most people expected.

The UK Government’s decision to ban petrol and diesel cars from 2030 has accelerated the buildout of EV chargers, leading to significant new investment by leading companies like Tesla and BP Chargemaster. There are now more than 35,000 charge points across the UK, a figure that is expected to increase by 10,000 in 2021.

The big barrier to purchase with electric vehicles is a lack of charging infrastructure and slow charge times. Building more charging stations is the simple solution to this problem, but bigger, better high power terminal blocks are also needed for the next generation of rapid chargers that will provide power up to 350 kW.

What is ‘high power’?

Anything above 40 amps is classed as high power. All public electric charging stations significantly exceed this amount. High power terminal blocks are typically available up to 125 amps and higher for custom applications.

We need terminal blocks capable of handling higher currents when the charging speed demand increases for the station. EV chargers are classified in three categories: Level 1, Level 2 and direct current. Whether a charger is AC or DC, the higher the current, the higher the power draw, so the more robust the terminal needs to be.

Terminal block specifications

Terminal blocks serve as a routing tool for wiring. They are simple components, used to connect circuits together and provide an electrical ground for the circuit.

Screw terminal, push button and push-in terminal block styles are available. These accommodate different types of circuit design. The module type can be interlocking or single-piece with a plug or receptacle housing.

Terminal blocks for EV charging stations are optimised for this specific purpose and they are normally rated for at least 150% of the max current.

Meeting the soaring demand for high power terminal blocks

Unlike semiconductors, there is no immediate shortage of high power terminal blocks. They are available in the tens of thousands per order.

There is competition between the EV and renewable energy industry for high power terminal blocks though. Both industries are significant consumers of these components and demand is increasing with new electrical installations.

Other in-demand components for electric vehicle charging infrastructure include battery connectors and high voltage connectors designed to handle the heat of EV charging. These connections need to be small but also thermally efficient.

Do you need help sourcing terminal blocks?

Cyclops is a leading supplier of high power terminal blocks and connectors to the electric vehicle and renewable energy markets. We are a global distributor with access to the widest range of electronic components for all applications.

You can find out more about what we do here. Email us if you have any questions or call us on 01904 415 415 for a chat with our team.

Tags: high power terminal block demand ev charging electric vehicles terminal block specifications


Component Search

Step 1

Enter Electronic Component part number below.

Step 2

Click the button below.
It’s that easy.

Cyclops Electronics Ltd, Reg. No. SC128862, VAT No. GB561633447

Registered Office: Allan House, 25 Bothwell Street, Glasgow G2 6NL

(Registered in the United Kingdom)

© 2021 Cyclops Electronics

Website by See Green