Tel 01904 415 415

Fax 01904 436 540

Cyclops Electronics uses cookies to ensure that we give you the best experience on our website. For optimal performance please accept cookies. For more information please visit our cookies policy.

Accept and close

Component Search


RSS Feed

Showing posts for March 2022

30 March 2022

The process of making silicon semiconductors

IC Component

As the global shortage of semiconductors (also called chips) continues, what better time is there to read up on how these intricate, tiny components are made?

One of the reasons the industry can’t catch up with the heightened demand for chips is that creating them takes huge amounts of time and precision. From the starting point of refining quartz sand, to the end product of a tiny chip with the capacity to hold thousands of components, let’s have a quick walkthrough of it all:

Silicon Ingots

Silicon is the most common semiconductor material currently used, and is normally refined from the naturally-occurring material silicon dioxide (SiO₂) or, as you might know it, quartz.

Once the silicon is refined and becomes hyper pure, it is heated to 1420˚C which is above its melting point. Then a single crystal, called the seed, is dipped into the molten mixture and slowly pulled out as the liquid silicon forms a perfect crystalline structure around it. This is the start of our wafers.

Slicing and Cleaning

The large cylinder of silicon is then cut into very fine slices with a diamond saw, and further polished so they are at a perfect thickness to be used in integrated circuits (ICs). This polishing process is undertaken in a clean room, where workers have to wear suits that will not collect particles and will cover their whole body. Even a single speck of dirt could ruin the wafers, so the clean room only allows up to 100 particles per cubic foot of air.


In this stage the silicon is covered with a layer of material called a photoresist, and is then put under a UV light mask to create the pattern of circuits on the wafer. Some of the photoresist layer is washed away by a solvent, and the remaining photoresist is stamped onto the silicon to produce the pattern.

Fun fact – The yellow light often seen in pictures of semiconductor fabs is in the lithography rooms. The photoresist material is sensitive to high frequency light, which is why UV is used to make it soluble. To avoid damaging the rest of the wafer, low frequency yellow light is used in the room.

The process of photolithography can be repeated many times to create the required outlines on each wafer, and it is at this stage that the outline of each individual rectangular chip is printed onto the wafer too.


The fine slices are stacked on top of each other to form the final ICs, with up to 30 unique wafers being used in sequence to create a single computer chip. The outlines of the chips are then cut to separate them from the wafer, and packaged individually to protect them.

The final product

Due to this convoluted, delicate process, the time take to manufacture a single semiconductor is estimated to take up to four months. This, and the specialist facilities that are needed to enable production, results in an extreme amount of care needing to be taken throughout fabrication.

If you’re struggling to source electronic components during this shortage, look no further than Cyclops Electronics. Cyclops specialises in both regular and hard-to-find components. Get in touch now to see how easy finding stock should be, at

Tags: shortage semiconductors chips silicon ingots slicing and cleaning photolithography layering

23 March 2022

The History of Transistors

semiconductor 2

Transistors are a vital, ubiquitous electronic component. Their main function is to switch or amplify the electrical current in a circuit, and a modern device like a smartphone can contain between 2 and 4 billion transistors.

So that’s some modern context, but have you ever wondered when the transistor was invented? Or what it looked like?

Pre-transistor technology

Going way back to when Ohm’s Law was first discovered in 1820s, people had been aware of circuits and the flow of current. As an extension of this, there was an awareness of conductors.

Following on from this, semiconductors accompanied the birth of the AC-DC (alternating current – direct current) conversion device, the rectifier, in 1874.

Two patents were filed in the 20s and 30s for devices that would have been transistors if they had ever reached past the theoretical stage. In 1925 Julius Lilienfeld of Austria-Hungary filed a patent, but did not end up releasing any papers regarding his research on the field-effect transistor, and so his discoveries were ignored.

Again, in 1934 German physicist Oskar Heil’s patent was on a device that, by applying an electrical field, could control the current in a circuit. With only theoretical ideas, this also did not become the first field effect transistor.

The invention of transistors

The official invention of a working transistor was in 1947, and the device was announced a year later in 1948. The inventors were three physicists working at Bell Telephone Laboratories in New Jersey, USA. William Shockley, John Bardeen and Walter Brattain were part of a semiconductor research subgroup working out of the labs.

One of the first attempts they made at a transistor was Shockley’s semiconductor triode, which was made up of three electrodes, an emitter, a collector and a large low-resistance contact placed on a block of germanium. However, the semiconductor surface trapped electrons, which blocked the main channel from the effect of the external field.

Despite this initial idea not working out, the issue was solved in 1946. After spending some time looking into three-layer structures featuring a reversed and forward-biased junction, they returned to their project on field-effect devices in a year later in 1947. At the end of that year, they found that with two very close contact junctions, with one forward biased and one reverse biased, there would be a slight gain.

The first working transistor featured a strip of gold over a triangle of plastic, finely cut with a razor at the tip to create two contact points with a hair’s breadth between them and placed on top of a block of germanium.

The device was announced in June of 1948 as the transistor – a mix of the words ‘transconductance’, ‘transfer’ and ‘varistor’.

The French connection

At the same time over the water in France, two German physicists working for Compagnie des Freins et Signaux were at a similar stage in the development of a point contact device, which they went on to call the ‘transistron’ when it was released.  

Herbert Mataré and Heinrich Welker released the transistron a few months after the Bell Labs transistor was announced but was engineered completely without influence by their American counterpart due to the secrecy around the Bell project.

Where we are now

The first germanium transistors were used in computers as a replacement for their predecessor vacuum tubes, and transistor car radios were produced all within only six years of its invention.

The first transistor was made with germanium, but since the material can’t withstand heats of more than 180˚F (82.2˚C), in 1954 Bell Labs switched to silicon. Later that year Texas Instruments began mass-producing silicon transistors.

First silicon transistor made in 1954 by Bell Labs, then Texas Instruments made first commercial mass produced silicon transistor the same year. Six years later in 1960 the first in the direct bloodline of modern transistors was made, again by Bell Labs – the metal-oxide-semiconductor field-effect Transistor (MOSFET).

Between then and now, most transistor technology has been based on the MOSFET, with the size shrinking from 40 micrometres when they were first invented, to the current average being about 14 nanometres.

The latest in transistor technology is called the RibbonFET. The technology was announced by Intel in 2021, and is a transistor whose gate surrounds the channel. The tech is due to come into use in 2024 when Intel change from nanometres to, the even smaller measuring unit, Angstrom.

There is also other tech that is being developed as the years march on, including research into the use of 2D materials like graphene.

If you’re looking for electronic components, Cyclops are here to help. Contact us at to order hard-to-find or obsolete electronic components. You can also use the rapid enquiry form on our website

Tags: transistors electronic component conductors semiconductors ac-dc texas instruments

16 March 2022

Ukraine - Russia conflict may increase global electronics shortage


Due to conflict between Russia and Ukraine, both of whom produce essential products for chip fabrication, the electronic component shortage across the globe may worsen.

Ukraine produces approximately half of the global supply of neon gas, which is used in the photolithography process of chip production. Russia is responsible for about 44% of all palladium, which is implemented in the chip plating process.

The two leading Ukrainian suppliers of neon, Ingas and Cryoin, have stopped production in Moscow and said they would be unable to fill orders until the fighting had stopped.

Ingas has customers in Taiwan, Korea, the US and Germany. The headquarters of the company are based in Mariupol, which has been a conflict zone since late February. According to Reuters the marketing officer for Ingas was unable to contact them due to lack of internet or phone connection in the city.

Cryoin said it had been shut since February 24th to keep its staff safe, and would be unable to fulfil March orders. The company said it would only be able to stay afloat for three months if the plant stayed closed, and would be even less likely to survive financially if any equipment or facilities were damaged.

Many manufacturers fear that neon gas, a by-product of Russian steel manufacturing, will see a price spike in the coming months. In 2014 during the annexing of Crimea, the price of neon rose by 600%.

Larger chip fabricators will no doubt see smaller losses due to their stockpiling and buying power, while smaller companies are more likely to suffer as a result of the material shortage.

It is further predicted that shipping costs will rise due to an increase in closed borders and sanctions, and there will be a rise in crude oil and auto fuel prices.

The losses could be mitigated in part by providing alternatives for neon and palladium, some of which can be produced by the UK or the USA. Gases with a chlorine or fluoride base could be used in place of neon, while palladium can be sourced from some countries in the west.

Neon could also be supplied by China, but the shortages mean that the prices are rising quickly and could be inaccessible to many smaller manufacturers.

Neon consumption worldwide for chip production was around 540 metric tons last year, and if companies began neon production now it would take between nine months and two years to reach steady levels.

Tags: chip fabrication electronic component neon gas chip production palladium ingas cryoin shipping costs

09 March 2022

What is the Internet of Things?



In terms of IoT, a ‘Thing’ is anything that can transfer data over a network and can have its own IP address. They are most often ‘smart’ devices, that use processors or sensors to accumulate and send data.

These devices have little-to-no need for human interaction, except in cases where the smart device is controlled by a remote control or something similar. Due to the low cost of electronic components and wireless networks being readily available, it’s possible for most things to become, well, Things.

Technically, larger items like computers, aeroplanes, and even phones, cannot be considered IoT devices, but normally contain a huge amount of the smart devices within them. Smaller devices, however, like wearable devices, smart meters and smart lightbulbs can all be counted as IoT items.

There are already more connected IoT devices than there are people in the world, and as more Things are produced this progress shows no sign of slowing.

Applications of IoT

The automation and smart learning of IoT devices has endless uses and can be implemented in many industries. The medical industry can use IoT to remotely monitor patients using smart devices that can track blood pressure, heart rate and glucose levels, and can check if patients are sticking to treatment plans or physiotherapy routines.

Smart farming has garnered attention in recent years for its possibly life-saving applications. The use of IoT devices in the agricultural industry can enable the monitoring of moisture levels, fertiliser quantities and soil analysis. Not only would these functions lower the labour costs for farmers substantially but could also be implemented in countries where there is a desperate need for agriculture.

The industrial and automotive industries also stand to benefit from the development of IoT. Road safety can be improved with fast data transfer of vehicle health, as well as location. Maintenance could be performed before issues begin to affect driving if data is collected and, alongside the implementation of AI, smart vehicles and autonomous cars could be able to drive, brake and park without human error.

What’s next?

The scope of possibilities for IoT will only grow as technology and electronics become more and more accessible. An even greater number of devices will become ‘smart’ and alongside the implementation of AI, we will likely have the opportunity to make our lives fully automated. We already have smart toothbrushes and smart lightbulbs, what more could be possible in the future?

To make it sustainable and cost-effective, greater measures in security and device standardisation need to be implemented to reduce the risk of hacking. The UK government released guidelines in 2018 on how to keep your IoT devices secure, and a further bill to improve cyber security entered into law in 2021.

If you’re looking for chips, processors, sensors, or any other electronic component, get in touch with Cyclops Electronics today. We are specialists in day-to-day and obsolete components and can supply you where other stockists cannot.

Contact Cyclops today at Or use the rapid enquiry form on our website to get fast results.

Tags: iot medical industry smart farming accessible chips processors sensors electronic component

02 March 2022

Could Graphene be used in semiconductors?


A new discovery

Graphene was first isolated at the University of Manchester in 2004. Professors Andre Geim and Kostya Novoselov were experimenting on a Friday night (as you do) and found they could create very thin flakes of graphite using sticky tape. When separating these fragments further, they found they could produce flakes that were one atom thick.

Geim and Novoselov were awarded the Nobel Prize in Physics for their ground-breaking experiments in 2010, and since the two had first identified the material since the 60s it had been a long time coming.

Despite its thinness Graphene is extremely strong, estimated to be 200 times stronger than steel

Is silicon outdated?

Semiconductors are inextricably linked to Moore’s Law, which is the principle that the number of transistors on a microchip doubles every year. But that observation Intel co-founder Gordon Moore made in 1965 is now losing speed.

Silicon chips will very soon reach their limit and will be unable to hold any additional transistors, which means that future innovation will require a replacement material. Graphene, with its single-atom thickness, is a contender.

In 2014 hardware company IBM devoted $3 billion to researching replacements for silicon as it believed the material would become obsolete. The company said as chips and transistors get smaller, as small as the current average of 7 nanometers (nm), the integrity of silicon is more at risk.

IBM revealed its new 2nm tech last year, which can hold 50 billion transistors on a single silicon chip, so the material is not going obsolete just yet.


Graphene is nowhere close to being a replacement for silicon, it is still in the development stage and the cost of implementing it into supply chain would be extensive. A lot more research and adjustment is required, and it would have to be introduced step by step to avoid prices skyrocketing and supply chains breaking down.

Graphene is not the only contender to be the replacement for silicon either. Carbon nanotubes are fighting for prominence, and other 2D materials like molybdenum disulfide and tungsten disulfide are also vying for the position.

Another disadvantage of Graphene is that there is no bandgap, which means the semiconductor can’t be switched off. The possibly jagged edges of the material could also pierce the cell membranes which may disrupt functions.

Other applications

Thanks to its 2D properties Graphene is also being studied for its potential uses in other areas. In relation to semiconductors there has been research from Korea on the uses of graphene as a filtration device for semiconductor wastewater. The oxide-based nanofiltration membranes could remove ammonium from the wastewater created by semiconductor production so it can then be recycled. As a wider application of this Graphene could be used as a filtration device for water or to remove gas from a gas-liquid mixture.

Graphene is also being researched for its uses in the biomedical field, which include being a platform for drug delivery, bone tissue engineering, and ultrasensitive biosensors to detect nucleic acids. Graphene has other sensor-based uses, because the sensors can be made in micrometre-size they could be made to detect events on a molecular level, and could be of use in agriculture and smart farming.

There is a possibility Graphene could be combined with paint to weather-proof or rust-proof vehicles and houses, and to coat sports equipment. It also could have potential within the energy field for extending the lifespan of lithium-ion batteries.

When can we expect change?

Consultation company McKinsey estimated there would be three phases to the implementation of Graphene, none of which have begun just yet. Phase one would be to use Graphene as an ‘enhancer’ of existing technology, and will simply improve other devices by extending the lifespan or improving the conduction. This phase is estimated to last for ten years, after which phase two will begin. In this step graphene will become a replacement for silicon and will be the next step in the improvement of semiconductors and electronics. After 25 years we can expect the next step in graphene applications, things we can only dream of now.

In the meantime, people will still be using silicon-based semiconductors for quite a while. If you’re on the lookout for chips, or any other day-to-day or obsolete electronic components, contact Cyclops today at, or use the rapid enquiry form on our website.

Tags: graphene silicon chips transistors ibm obsolete supply chain semiconductor semiconductor wastewater.

Component Search

Step 1

Enter Electronic Component part number below.

Step 2

Click the button below.
It’s that easy.

Cyclops Electronics Ltd, Reg. No. SC128862, VAT No. GB561633447

Registered Office: Allan House, 25 Bothwell Street, Glasgow G2 6NL

(Registered in the United Kingdom)

© 2022 Cyclops Electronics

Website by See Green